Wdrażanie aplikacji chatbota FastAPI w Cloud Run za pomocą Gemini

Wdrażanie aplikacji chatbota FastAPI w Cloud Run za pomocą Gemini

Informacje o tym ćwiczeniu (w Codelabs)

subjectOstatnia aktualizacja: kwi 2, 2025
account_circleDokument stworzony przez pracownika Google

1. Wprowadzenie

Omówienie

Z tego Codelab dowiesz się, jak wdrożyć aplikację FastAPI do Cloud Run. Aplikacja jest chatbotem, który uruchamia model Gemini.

Czego się nauczysz

  • Jak wdrożyć FastAPI do Cloud Run
  • Wywoływanie Gemini z Cloud Run w Pythonie za pomocą biblioteki klienta Google

2. Konfiguracja i wymagania

Ustaw zmienne środowiskowe, których będziesz używać w tym ćwiczeniu.

PROJECT_ID=<YOUR_PROJECT_ID>
REGION
=<YOUR_REGION>
GEMINI_MODEL
=gemini-2.0-flash-001

SERVICE_NAME
=fastapi-gemini
SERVICE_ACCOUNT
=fastapi-gemini-sa
SERVICE_ACCOUNT_ADDRESS
=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com

Utwórz konto usługi, uruchamiając to polecenie:

gcloud iam service-accounts create $SERVICE_ACCOUNT \
 
--display-name="Service Account for FastAPI Gemini CR service"

Przypisz do konta usługi dostęp do Gemini z rolą użytkownika Vertex AI.

gcloud projects add-iam-policy-binding $PROJECT_ID \
 
--member="serviceAccount:$SERVICE_ACCOUNT_ADDRESS" \
 
--role="roles/aiplatform.user"

3. Tworzenie aplikacji

Utwórz katalog na kod.

mkdir codelab-cr-fastapi-gemini
cd codelab
-cr-fastapi-gemini

Najpierw utwórz szablony HTML, tworząc katalog szablonów.

mkdir templates
cd templates

Utwórz nowy plik o nazwie ai_message.html z tą zawartością:

<div class="message-container ai-message-container">
    {{ ai_response_text }}
</div>

Utwórz nowy plik o nazwie message.html z tą zawartością:

<div class="message-container user-message">
    {{ message }}
</div>

Utwórz nowy plik o nazwie index.html z tą zawartością:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>FastAPI HTMX Gemini Chat</title>
    <style>
        body { font-family: sans-serif; max-width: 700px; margin: auto; padding: 20px; background-color: #f4f4f4; }
        #chat-messages { border: 1px solid #ccc; background-color: #fff; padding: 15px; height: 400px; overflow-y: scroll; margin-bottom: 15px; border-radius: 5px; box-shadow: inset 0 1px 3px rgba(0,0,0,0.1); }
        .message-container { margin-bottom: 10px; padding: 8px 12px; border-radius: 15px; max-width: 80%; word-wrap: break-word; }
        .user-message { background-color: #dcf8c6; align-self: flex-end; margin-left: auto; text-align: right; border-bottom-right-radius: 0;}
        .ai-message-container { background-color: #eee; align-self: flex-start; margin-right: auto; border-bottom-left-radius: 0;}
        .ai-message-container p { margin: 0.2em 0; } /* Spacing for streamed paragraphs */
        .ai-message-container p:first-child { margin-top: 0; }
        .ai-message-container p:last-child { margin-bottom: 0; }
        form { display: flex; margin-top: 10px; }
        input[type="text"] { flex-grow: 1; padding: 10px; border: 1px solid #ccc; border-radius: 20px; margin-right: 10px; }
        button { padding: 10px 20px; background-color: #0b93f6; color: white; border: none; border-radius: 20px; cursor: pointer; font-weight: bold; }
        button:hover { background-color: #0a84dd; }
    </style>
    <script src="https://unpkg.com/htmx.org@2.0.4"
    integrity="sha384-HGfztofotfshcF7+8n44JQL2oJmowVChPTg48S+jvZoztPfvwD79OC/LTtG6dMp+" crossorigin="anonymous"></script>
    <script src="https://unpkg.com/htmx-ext-sse@2.2.2" crossorigin="anonymous"></script>
</head>
<body>

    <h1>Chat with Gemini</h1>

    <div id="chat-messages">
        {% for msg in messages %}
             {# Render initial messages if needed #}
        {% endfor %}
    </div>

    <form
        hx-post="/ask"             {# Post to the /ask endpoint #}
        hx-target="#chat-messages" {# Target the main chat area #}
        hx-swap="beforeend"        {# Append the response (user msg + AI placeholder) #}
        hx-on::after-request="this.reset(); document.getElementById('chat-messages').scrollTop = document.getElementById('chat-messages').scrollHeight;" {# Clear form & scroll down #}
        >
        <input type="text" name="message" placeholder="Ask Gemini..." autofocus autocomplete="off">
        <button type="submit">Send</button>
    </form>

    <script>
        // Initial scroll to bottom on page load (if needed)
        window.onload = () => {
            const chatBox = document.getElementById('chat-messages');
            chatBox.scrollTop = chatBox.scrollHeight;
        }
    </script>

</body>
</html>

Teraz utwórz kod Pythona i inne pliki w katalogu głównym.

cd ..

Utwórz plik .gcloudignore z tą zawartością:

__pycache__

Utwórz plik o nazwie main.py z tą zawartością:

from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from typing import List, Annotated
from google import genai
import os

# in case the env var isn't set, use YOUR_<VARIABLE> as the default
# to help with debugging
project_id = os.getenv("PROJECT_ID", "YOUR_PROJECT_ID")
region = os.getenv("REGION", "YOUR_REGION")
gemini_model = os.getenv("GEMINI_MODEL", "gemini-2.0-flash-001")

app = FastAPI(title="FastAPI HTMX Chat")

templates = Jinja2Templates(directory="templates")

genai_client = genai.Client(
   
vertexai=True, project=project_id, location=region
)

system_prompt = f"""
You're a chatbot that helps pass the time with small talk, that is
polite conversation about unimportant or uncontroversial matters
that allows people to pass the time. Please keep your answers short.
"""

chat_messages: List[str] = []

# --- Routes ---
@app.get("/", response_class=HTMLResponse)
async def get_chat_ui(request: Request):
    """Serves the main chat page."""
   
print("Serving index.html")
   
return templates.TemplateResponse(
       
"index.html",
       
{"request": request, "messages": chat_messages} # Pass existing messages
   
)

@app.post("/ask", response_class=HTMLResponse)
async def ask_gemini_and_respond(
   
request: Request,
   
# Use Annotated for dependency injection with Form data
   
message: Annotated[str, Form()]
):
   
   
user_msg_html = templates.get_template('message.html').render({'message': message})
   
   
print("asking gemini...")
   
response = genai_client.models.generate_content(
       
model=gemini_model,
       
contents=[message],
       
config=genai.types.GenerateContentConfig(
           
system_instruction=system_prompt,
           
temperature=0.7,
       
),
   
)
   
   
print("Gemini responded with: " + response.text)
   
   
ai_response_html = templates.get_template('ai_message.html').render({'ai_response_text': response.text})

   
combined_html = user_msg_html + ai_response_html

   
return HTMLResponse(content=combined_html)

Utwórz plik Dockerfile z tymi treściami:

# Build stage
FROM python:3.12-slim AS builder

WORKDIR /app

# Install poetry
RUN pip install poetry
RUN poetry self add poetry-plugin-export

# Copy poetry files
COPY pyproject.toml poetry.lock* ./

# Copy application code
COPY . .

# Export dependencies to requirements.txt
RUN poetry export -f requirements.txt --output requirements.txt

# Final stage
FROM python:3.12-slim

RUN apt-get update && apt-get install -y libcairo2 python3-dev libffi-dev

WORKDIR /app

# Copy files from builder
COPY --from=builder /app/ .

# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt

# Compile bytecode to improve startup latency
# -q: Quiet mode
# -b: Write legacy bytecode files (.pyc) alongside source
# -f: Force rebuild even if timestamps are up-to-date
RUN python -m compileall -q -b -f .

# Expose port
EXPOSE 8080

# Run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"]

Tworzenie pliku pyproject.toml

[tool.poetry]
name = "codelab"
version = "0.1.0"
description = ""
authors = ["Your Name <you@example.com>"]
readme = "README.md"

[tool.poetry.dependencies]
python = "^3.12"
fastapi = "^0.115.12"
uvicorn = {extras = ["standard"], version = "^0.34.0"}
jinja2 = "^3.1.6"
python-multipart = "^0.0.20"
google-genai = "^1.8.0"


[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

4. Wdrożenie w Cloud Run

gcloud run deploy $SERVICE_NAME \
 --source . \
 --allow-unauthenticated \
 --service-account=$SERVICE_ACCOUNT_ADDRESS \
 --set-env-vars=PROJECT_ID=$PROJECT_ID \
 --set-env-vars=REGION=$REGION \
 --set-env-vars=GEMINI_MODEL=$GEMINI_MODEL

5. Testowanie usługi

Otwórz adres URL usługi w przeglądarce i zadaj Gemini pytanie, np. „Dlaczego niebo jest niebieskie?”.

6. Gratulacje!

Gratulujemy ukończenia ćwiczeń.

Omówione zagadnienia

  • Jak wdrożyć FastAPI do Cloud Run
  • Wywoływanie Gemini z Cloud Run w Pythonie za pomocą biblioteki klienta Google

7. Czyszczenie danych

Aby usunąć usługę Cloud Run, otwórz Cloud Console Cloud Run na stronie https://console.cloud.google.com/run i usuń usługę.

Jeśli chcesz usunąć cały projekt, otwórz stronę https://console.cloud.google.com/cloud-resource-manager, wybierz projekt utworzony w kroku 2 i kliknij Usuń. Jeśli usuniesz projekt, musisz zmienić projekty w Cloud SDK. Aby wyświetlić listę wszystkich dostępnych projektów, uruchom gcloud projects list.