מידע על Codelab זה
1. מבוא
סקירה כללית
בשיעור ה-Codelab הזה תלמדו איך לפרוס אפליקציית FastAPI ב-Cloud Run. האפליקציה היא אפליקציית צ'אטבוט שמפעילה מודל של Gemini.
מה תלמדו
- איך פורסים את FastAPI ב-Cloud Run
- איך מפעילים את Gemini מ-Cloud Run ב-Python באמצעות ספריית לקוח של Google
2. הגדרה ודרישות
מגדירים משתני סביבה שישמשו לאורך סדנת הקוד הזו.
PROJECT_ID=<YOUR_PROJECT_ID>
REGION=<YOUR_REGION>
GEMINI_MODEL=gemini-2.0-flash-001
SERVICE_NAME=fastapi-gemini
SERVICE_ACCOUNT=fastapi-gemini-sa
SERVICE_ACCOUNT_ADDRESS=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com
יוצרים את חשבון השירות באמצעות הפקודה הבאה:
gcloud iam service-accounts create $SERVICE_ACCOUNT \
--display-name="Service Account for FastAPI Gemini CR service"
מעניקים לחשבון השירות גישה ל-Gemini באמצעות התפקיד Vertex AI User.
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member="serviceAccount:$SERVICE_ACCOUNT_ADDRESS" \
--role="roles/aiplatform.user"
3. יצירת האפליקציה
יוצרים ספרייה לקוד.
mkdir codelab-cr-fastapi-gemini
cd codelab-cr-fastapi-gemini
קודם כול, יוצרים את התבניות של ה-HTML על ידי יצירת ספריית תבניות.
mkdir templates
cd templates
יוצרים קובץ חדש בשם ai_message.html
עם התוכן הבא:
<div class="message-container ai-message-container">
{{ ai_response_text }}
</div>
יוצרים קובץ חדש בשם message.html
עם התוכן הבא:
<div class="message-container user-message">
{{ message }}
</div>
יוצרים קובץ חדש בשם index.html
עם התוכן הבא:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>FastAPI HTMX Gemini Chat</title>
<style>
body { font-family: sans-serif; max-width: 700px; margin: auto; padding: 20px; background-color: #f4f4f4; }
#chat-messages { border: 1px solid #ccc; background-color: #fff; padding: 15px; height: 400px; overflow-y: scroll; margin-bottom: 15px; border-radius: 5px; box-shadow: inset 0 1px 3px rgba(0,0,0,0.1); }
.message-container { margin-bottom: 10px; padding: 8px 12px; border-radius: 15px; max-width: 80%; word-wrap: break-word; }
.user-message { background-color: #dcf8c6; align-self: flex-end; margin-left: auto; text-align: right; border-bottom-right-radius: 0;}
.ai-message-container { background-color: #eee; align-self: flex-start; margin-right: auto; border-bottom-left-radius: 0;}
.ai-message-container p { margin: 0.2em 0; } /* Spacing for streamed paragraphs */
.ai-message-container p:first-child { margin-top: 0; }
.ai-message-container p:last-child { margin-bottom: 0; }
form { display: flex; margin-top: 10px; }
input[type="text"] { flex-grow: 1; padding: 10px; border: 1px solid #ccc; border-radius: 20px; margin-right: 10px; }
button { padding: 10px 20px; background-color: #0b93f6; color: white; border: none; border-radius: 20px; cursor: pointer; font-weight: bold; }
button:hover { background-color: #0a84dd; }
</style>
<script src="https://unpkg.com/htmx.org@2.0.4"
integrity="sha384-HGfztofotfshcF7+8n44JQL2oJmowVChPTg48S+jvZoztPfvwD79OC/LTtG6dMp+" crossorigin="anonymous"></script>
<script src="https://unpkg.com/htmx-ext-sse@2.2.2" crossorigin="anonymous"></script>
</head>
<body>
<h1>Chat with Gemini</h1>
<div id="chat-messages">
{% for msg in messages %}
{# Render initial messages if needed #}
{% endfor %}
</div>
<form
hx-post="/ask" {# Post to the /ask endpoint #}
hx-target="#chat-messages" {# Target the main chat area #}
hx-swap="beforeend" {# Append the response (user msg + AI placeholder) #}
hx-on::after-request="this.reset(); document.getElementById('chat-messages').scrollTop = document.getElementById('chat-messages').scrollHeight;" {# Clear form & scroll down #}
>
<input type="text" name="message" placeholder="Ask Gemini..." autofocus autocomplete="off">
<button type="submit">Send</button>
</form>
<script>
// Initial scroll to bottom on page load (if needed)
window.onload = () => {
const chatBox = document.getElementById('chat-messages');
chatBox.scrollTop = chatBox.scrollHeight;
}
</script>
</body>
</html>
עכשיו יוצרים את קוד Python ואת הקבצים האחרים בתיקיית השורש.
cd ..
יוצרים קובץ .gcloudignore
עם התוכן הבא:
__pycache__
יוצרים קובץ בשם main.py
עם התוכן הבא:
from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from typing import List, Annotated
from google import genai
import os
# in case the env var isn't set, use YOUR_<VARIABLE> as the default
# to help with debugging
project_id = os.getenv("PROJECT_ID", "YOUR_PROJECT_ID")
region = os.getenv("REGION", "YOUR_REGION")
gemini_model = os.getenv("GEMINI_MODEL", "gemini-2.0-flash-001")
app = FastAPI(title="FastAPI HTMX Chat")
templates = Jinja2Templates(directory="templates")
genai_client = genai.Client(
vertexai=True, project=project_id, location=region
)
system_prompt = f"""
You're a chatbot that helps pass the time with small talk, that is
polite conversation about unimportant or uncontroversial matters
that allows people to pass the time. Please keep your answers short.
"""
chat_messages: List[str] = []
# --- Routes ---
@app.get("/", response_class=HTMLResponse)
async def get_chat_ui(request: Request):
"""Serves the main chat page."""
print("Serving index.html")
return templates.TemplateResponse(
"index.html",
{"request": request, "messages": chat_messages} # Pass existing messages
)
@app.post("/ask", response_class=HTMLResponse)
async def ask_gemini_and_respond(
request: Request,
# Use Annotated for dependency injection with Form data
message: Annotated[str, Form()]
):
user_msg_html = templates.get_template('message.html').render({'message': message})
print("asking gemini...")
response = genai_client.models.generate_content(
model=gemini_model,
contents=[message],
config=genai.types.GenerateContentConfig(
system_instruction=system_prompt,
temperature=0.7,
),
)
print("Gemini responded with: " + response.text)
ai_response_html = templates.get_template('ai_message.html').render({'ai_response_text': response.text})
combined_html = user_msg_html + ai_response_html
return HTMLResponse(content=combined_html)
יוצרים קובץ Dockerfile
עם התוכן הבא:
# Build stage
FROM python:3.12-slim AS builder
WORKDIR /app
# Install poetry
RUN pip install poetry
RUN poetry self add poetry-plugin-export
# Copy poetry files
COPY pyproject.toml poetry.lock* ./
# Copy application code
COPY . .
# Export dependencies to requirements.txt
RUN poetry export -f requirements.txt --output requirements.txt
# Final stage
FROM python:3.12-slim
RUN apt-get update && apt-get install -y libcairo2 python3-dev libffi-dev
WORKDIR /app
# Copy files from builder
COPY --from=builder /app/ .
# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Compile bytecode to improve startup latency
# -q: Quiet mode
# -b: Write legacy bytecode files (.pyc) alongside source
# -f: Force rebuild even if timestamps are up-to-date
RUN python -m compileall -q -b -f .
# Expose port
EXPOSE 8080
# Run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"]
יצירת קובץ pyproject.toml
[tool.poetry]
name = "codelab"
version = "0.1.0"
description = ""
authors = ["Your Name <you@example.com>"]
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.12"
fastapi = "^0.115.12"
uvicorn = {extras = ["standard"], version = "^0.34.0"}
jinja2 = "^3.1.6"
python-multipart = "^0.0.20"
google-genai = "^1.8.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
4. פריסה ב-Cloud Run
gcloud run deploy $SERVICE_NAME \
--source . \
--allow-unauthenticated \
--service-account=$SERVICE_ACCOUNT_ADDRESS \
--set-env-vars=PROJECT_ID=$PROJECT_ID \
--set-env-vars=REGION=$REGION \
--set-env-vars=GEMINI_MODEL=$GEMINI_MODEL
5. בדיקת השירות
פותחים את כתובת ה-URL של השירות בדפדפן האינטרנט ושואלים את Gemini שאלה, למשל: למה השמיים כחולים?
6. מעולה!
כל הכבוד על השלמת ה-Codelab!
מה עסקנו בו
- איך פורסים את FastAPI ב-Cloud Run
- איך מפעילים את Gemini מ-Cloud Run ב-Python באמצעות ספריית לקוח של Google
7. הסרת המשאבים
כדי למחוק את שירות Cloud Run, נכנסים למסוף Cloud של Cloud Run בכתובת https://console.cloud.google.com/run ומוחקים את השירות.
אם בוחרים למחוק את הפרויקט כולו, אפשר לעבור אל https://console.cloud.google.com/cloud-resource-manager, לבחור את הפרויקט שיצרתם בשלב 2 ולבחור באפשרות Delete (מחיקה). אם תמחקו את הפרויקט, תצטרכו לשנות את הפרויקטים ב-Cloud SDK. כדי להציג את רשימת כל הפרויקטים הזמינים, מריצים את הפקודה gcloud projects list
.