1. Einführung
Private Service Connect ist eine Funktion des Google Cloud-Netzwerks, mit der Nutzer auf Dienste von Dienstleistern zugreifen können. Dazu gehört auch die Möglichkeit, über einen privaten Endpunkt, der in der VPC des Nutzers(in der Regel eines Verbrauchers) gehostet wird, eine Verbindung zu Google APIs herzustellen.
Darüber hinaus können PSC-Back-Ends in Verbindung mit Google Cloud-Proxy-Load Balancern verwendet werden, um auf regionsspezifische Google APIs zu verweisen. Die Verwendung von PSC-Back-Ends bietet detailliertere Einstellungen auf Seiten der Nutzer, z. B.:
- Mit einer URL-Zuordnung festlegen, welche Google API-Dienste verfügbar sind
- Umfassendere Sichtbarkeit
- Cloud Armor-Integration
- Benutzerdefinierte URLs
- Erweiterte Traffic-Verwaltung
Eine Liste der verfügbaren Dienste und ihrer regionalen APIs finden Sie hier.
In diesem Codelab erstellen Sie ein PSC-Backend, das auf die regionale Cloud KMS API verweist, und testen die Verbindung zu dieser API.
Lerninhalte
- Erstellen Sie einen Cloud Key Management Service-Schlüsselbund und einen Schlüssel.
- Internen Application Load Balancer mit einem PSC-Back-End erstellen, das auf eine regionale Cloud KMS API verweist
- Erstellen einer verwalteten privaten Cloud DNS-Zone und eines A-Eintrags
- Auf die regionale Cloud KMS-Umgebung zugreifen
Voraussetzungen
- Ein Google Cloud-Projekt mit idealerweise der Berechtigung „Inhaber“ oder der vollständigen Berechtigung „Bearbeiter“.
2. Codelab-Topologie
Es wird ein Verbraucher-VPC mit einem Subnetz in der Region „europe-west9“ zum Hosten einer VM, der Weiterleitungsregel für den internen regionalen Application Load Balancer, dem PSC-Backend und einem Nur-Proxy-Subnetz für den Load Balancer erstellt. Wir erstellen einen Schlüsselbund und einen Schlüssel im Cloud Key Management System (KMS) in der Region „europe-west“. Anschließend erstellen wir den Load Balancer und das PSC-Backend, um eine Auflösung auf die regionale KMS API in europe-west9 vorzunehmen.
3. Einrichtung und Anforderungen
Einrichtung der Umgebung im eigenen Tempo
- Melden Sie sich in der Google Cloud Console an und erstellen Sie ein neues Projekt oder verwenden Sie ein vorhandenes. Wenn Sie noch kein Gmail- oder Google Workspace-Konto haben, müssen Sie ein Konto erstellen.
- Der Projektname ist der Anzeigename für die Teilnehmer dieses Projekts. Es ist ein Zeichenstring, der von Google APIs nicht verwendet wird. Sie können ihn jederzeit aktualisieren.
- Die Projekt-ID ist für alle Google Cloud-Projekte eindeutig und kann nach der Festlegung nicht mehr geändert werden. In der Cloud Console wird automatisch ein eindeutiger String generiert. In der Regel spielt es keine Rolle, wie er lautet. In den meisten Codelabs müssen Sie auf Ihre Projekt-ID verweisen (normalerweise als
PROJECT_ID
gekennzeichnet). Wenn Ihnen die generierte ID nicht gefällt, können Sie eine andere zufällige generieren. Alternativ können Sie Ihr eigenes Konto ausprobieren und prüfen, ob es verfügbar ist. Sie kann nach diesem Schritt nicht mehr geändert werden und bleibt für die Dauer des Projekts bestehen. - Zur Information: Es gibt einen dritten Wert, die Projektnummer, die von einigen APIs verwendet wird. Weitere Informationen zu diesen drei Werten finden Sie in der Dokumentation.
- Als Nächstes müssen Sie die Abrechnung in der Cloud Console aktivieren, um Cloud-Ressourcen/-APIs verwenden zu können. Die Durchführung dieses Codelabs ist kostenlos oder kostet nur sehr wenig. Wenn Sie die Ressourcen deaktivieren möchten, um Kosten nach Abschluss dieser Anleitung zu vermeiden, können Sie die von Ihnen erstellten Ressourcen oder das Projekt löschen. Neuen Google Cloud-Nutzern steht das kostenlose Testprogramm mit einem Guthaben von 300$ zur Verfügung.
Cloud Shell starten
Sie können Google Cloud zwar per Fernzugriff von Ihrem Laptop aus nutzen, in diesem Codelab verwenden Sie jedoch Google Cloud Shell, eine Befehlszeilenumgebung, die in der Cloud ausgeführt wird.
Klicken Sie in der Google Cloud Console rechts oben in der Symbolleiste auf das Cloud Shell-Symbol:
Die Bereitstellung und Verbindung mit der Umgebung sollte nur wenige Minuten dauern. Wenn der Vorgang abgeschlossen ist, sollte in etwa Folgendes angezeigt werden:
Diese virtuelle Maschine verfügt über sämtliche Entwicklertools, die Sie benötigen. Sie bietet ein Basisverzeichnis mit 5 GB nichtflüchtigem Speicher und läuft auf Google Cloud. Dadurch werden Netzwerkleistung und Authentifizierung erheblich verbessert. Alle Aufgaben in diesem Codelab können in einem Browser ausgeführt werden. Sie müssen nichts installieren.
4. Hinweis
APIs aktivieren
Prüfen Sie in Cloud Shell, ob Ihre Projekt-ID eingerichtet ist.
gcloud config list project gcloud config set project <project-id> export PROJECT_ID=$(gcloud config get-value project) export REGION=europe-west9 export ZONE=europe-west9-a echo $PROJECT_ID echo $REGION echo $ZONE
Alle erforderlichen Dienste aktivieren
gcloud services enable compute.googleapis.com gcloud services enable servicedirectory.googleapis.com gcloud services enable dns.googleapis.com gcloud services enable cloudkms.googleapis.com
5. VPC-Netzwerk, Subnetze und Firewallregeln erstellen
VPC-Netzwerk erstellen
Über Cloud Shell
# Set environment variables export VPC_NAME="consumer-vpc" export SUBNET_NAME="consumer-subnet-1" # Create VPC network gcloud compute networks create ${VPC_NAME} \ --subnet-mode=custom \ --bgp-routing-mode=regional
Subnetze erstellen
Über Cloud Shell
gcloud compute networks subnets create ${SUBNET_NAME} \ --network=${VPC_NAME} \ --region=${REGION} \ --range=10.0.0.0/24 \ --enable-private-ip-google-access
In diesem Lab erstellen Sie einen internen regionalen L7-Load Balancer, der auf regionale API-Back-Ends verweist. Da es sich bei diesem Load Balancer um einen Proxy-Load Balancer handelt, müssen Sie ein Proxy-Subnetz erstellen, das dem Load Balancer für die Ausführung des Proxys zugewiesen ist. Weitere Informationen zu Nur-Proxy-Subnetzen
Über Cloud Shell
gcloud compute networks subnets create eu-west9-proxy-subnet \ --network=${VPC_NAME} \ --region=${REGION} \ --range=10.100.100.0/24 \ --purpose=REGIONAL_MANAGED_PROXY \ --role=ACTIVE
Firewallregeln erstellen
In diesem Lab verwenden Sie IAP, um eine Verbindung zu den von Ihnen erstellten Instanzen herzustellen. Wenn Sie IAP nicht verwenden möchten, können Sie diesen Schritt überspringen und stattdessen der Instanz öffentliche IP-Adressen hinzufügen und eine Firewallregel erstellen, die den Zugriff auf TCP-Port 22 von 0.0.0.0/0 zulässt.
Damit IAP eine Verbindung zu Ihren VM-Instanzen herstellen kann, erstellen Sie eine Firewallregel, die:
- Gilt für alle VM-Instanzen, die über IAP zugänglich sein sollen.
- Lässt eingehenden Traffic aus dem IP-Bereich 35.235.240.0/20 zu. Dieser Bereich enthält alle IP-Adressen, die IAP für die TCP-Weiterleitung verwendet.
Über Cloud Shell
gcloud compute firewall-rules create allow-ssh-iap \ --network=${VPC_NAME} \ --allow tcp:22 \ --source-ranges=35.235.240.0/20
6. Cloud NAT erstellen
Um Linux-Paketverteilungen herunterzuladen, muss eine Cloud NAT erstellt werden.
Cloud Router erstellen
Über Cloud Shell
gcloud compute routers create crnat \ --network=${VPC_NAME} \ --region=${REGION}
Cloud NAT erstellen
Über Cloud Shell
gcloud compute routers nats create europe-nat \ --router=crnat \ --auto-allocate-nat-external-ips \ --nat-all-subnet-ip-ranges \ --enable-logging \ --region=${REGION}
7. Schlüsselbund und Schlüssel für die Schlüsselverwaltung erstellen
Über Cloud Shell
gcloud kms keyrings create europe-kr \ --location ${REGION}
Über Cloud Shell
gcloud kms keys create europe-key \ --location ${REGION} \ --keyring europe-kr \ --purpose encryption
Prüfen Sie in Cloud Shell, ob der Schlüsselbund und der Schlüssel in der Region „europe-west“ erfolgreich erstellt wurden.
gcloud kms keys list \ --location ${REGION} \ --keyring europe-kr
ERWARTETES ERGEBNIS
NAME: projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key PURPOSE: ENCRYPT_DECRYPT ALGORITHM: GOOGLE_SYMMETRIC_ENCRYPTION PROTECTION_LEVEL: SOFTWARE LABELS: PRIMARY_ID: 1 PRIMARY_STATE: ENABLED
Notieren Sie sich den vollständigen Pfad, der für die Schlüssel angegeben ist, da Sie ihn später für die Verbindung verwenden.
8. Client-VM erstellen und eine Verbindung zur KMS API herstellen
Als Nächstes erstellen Sie eine Client-VM, verbinden sich per SSH mit der VM und testen die Auflösung der globalen KMS API. Dieser Test ist die Standardoption für die Auflösung globaler Google APIs.
Über Cloud Shell
#Create the startup script touch startup.sh #Open the startup.sh file using a text editor of your choice (e.g., nano, vim, gedit, etc.) nano startup.sh #Paste the following script content into the startup.sh file #! /bin/bash sudo apt-get update sudo apt-get install dnsutils -y sudo apt-get install tcpdump -y #Save the changes you made to the startup.sh file #Use the chmod command to make the script executable chmod +x startup.sh #Create the VM instance gcloud compute instances create client-vm \ --network="${VPC_NAME}" \ --subnet="${SUBNET_NAME}" \ --zone="europe-west9-a" \ --machine-type="e2-medium" \ --no-address \ --scopes="https://www.googleapis.com/auth/cloud-platform" \ --image-family="debian-12" \ --image-project="debian-cloud" \ --metadata-from-file="startup-script=./startup.sh"
Als Nächstes müssen Sie das Standard-Compute-Dienstkonto aktualisieren, um Zugriff auf den von Ihnen erstellten KMS-Schlüssel zu erhalten. Das standardmäßige Compute-Dienstkonto hat das Format <Project_Number> -compute@developer.gserviceaccount.com. Um die Projektnummer abzurufen, führen Sie den folgenden Befehl in Cloud Shell aus und kopieren Sie die Nummer in der letzten Zeile der Rückgabeergebnisse.
gcloud projects describe $PROJECT_ID
Aktualisieren Sie das Standard-Compute-Dienstkonto, um Zugriff auf den von Ihnen erstellten KMS-Schlüssel zu erhalten.
Über Cloud Shell
gcloud kms keys add-iam-policy-binding europe-key \ --location $REGION \ --keyring europe-kr \ --member serviceAccount:<project_number>-compute@developer.gserviceaccount.com \ --role roles/cloudkms.admin
Klicken Sie auf das Pluszeichen +, um ein zusätzliches Cloud Shell-Terminal zu erstellen (siehe Screenshot unten).
Auf Tab 2 einen Tunnel über den IAP erstellen, um eine SSH-Verbindung zur Client-VM herzustellen. Umgebungsvariablen werden nicht übernommen. Sie müssen dem Befehl unten Ihre Projekt-ID hinzufügen.
Über Cloud Shell
# Set the environment variable export PROJECT_ID=$(gcloud config get-value project) # ssh into the client-vm gcloud beta compute ssh --zone europe-west9-a "client-vm" \ --tunnel-through-iap \ --project $PROJECT_ID
Stellen Sie eine Verbindung zur globalen KMS API her, indem Sie den zuvor notierten KMS-Schlüsselnamen verwenden.
Auf Tab 2 unter „client-vm“
# Store the access token in a variable TOKEN=$(gcloud auth print-access-token) # Run the full command with maximum verbosity curl -v \ -H "Authorization: Bearer $TOKEN" \ -H "Content-Type: application/json" \ 'https://cloudkms.googleapis.com/v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key'
ERWARTETES ERGEBNIS
* Trying 216.58.214.74:443... * Connected to cloudkms.googleapis.com (216.58.214.74) port 443 (#0) * ALPN: offers h2,http/1.1 * TLSv1.3 (OUT), TLS handshake, Client hello (1): * CAfile: /etc/ssl/certs/ca-certificates.crt * CApath: /etc/ssl/certs * TLSv1.3 (IN), TLS handshake, Server hello (2): * TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8): * TLSv1.3 (IN), TLS handshake, Certificate (11): * TLSv1.3 (IN), TLS handshake, CERT verify (15): * TLSv1.3 (IN), TLS handshake, Finished (20): * TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1): * TLSv1.3 (OUT), TLS handshake, Finished (20): * SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384 * ALPN: server accepted h2 * Server certificate: * subject: CN=upload.video.google.com * start date: Aug 26 07:12:45 2024 GMT * expire date: Nov 18 07:12:44 2024 GMT * subjectAltName: host "cloudkms.googleapis.com" matched cert's "*.googleapis.com" * issuer: C=US; O=Google Trust Services; CN=WR2 * SSL certificate verify ok. * using HTTP/2 * h2h3 [:method: GET] * h2h3 [:path: /v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key] * h2h3 [:scheme: https] * h2h3 [:authority: cloudkms.googleapis.com] * h2h3 [user-agent: curl/7.88.1] * h2h3 [accept: */*] * h2h3 [authorization: Bearer dsnkjfdnvjfd * h2h3 [content-type: application/json] * Using Stream ID: 1 (easy handle 0x55ed8bb7ece0) > GET /v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key HTTP/2 > Host: cloudkms.googleapis.com > user-agent: curl/7.88.1 > accept: */* > authorization: Bearer dsnkjfdnvjfd > content-type: application/json > < HTTP/2 200 < content-type: application/json; charset=UTF-8 < vary: X-Origin < vary: Referer < vary: Origin,Accept-Encoding < date: Tue, 24 Sep 2024 18:25:42 GMT < server: ESF < cache-control: private < x-xss-protection: 0 < x-frame-options: SAMEORIGIN < x-content-type-options: nosniff < accept-ranges: none < { "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key", "primary": { "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key/cryptoKeyVersions/1", "state": "ENABLED", "createTime": "2024-09-24T17:56:01.905156045Z", "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION", "generateTime": "2024-09-24T17:56:01.905156045Z" }, "purpose": "ENCRYPT_DECRYPT", "createTime": "2024-09-24T17:56:01.905156045Z", "versionTemplate": { "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION" }, "destroyScheduledDuration": "2592000s" } * Connection #0 to host cloudkms.googleapis.com left intact
Prüfen Sie, wo der KMS-Endpunkt vom DNS aufgelöst wird.
Auf Tab 2: „client-vm“
dig cloudkms.googleapis.com
ERWARTETES ERGEBNIS
<<>> DiG 9.18.28-1~deb12u2-Debian <<>> cloudkms.googleapis.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62617 ;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 65494 ;; QUESTION SECTION: ;cloudkms.googleapis.com. IN A ;; ANSWER SECTION: cloudkms.googleapis.com. 300 IN A 142.250.74.234 cloudkms.googleapis.com. 300 IN A 142.250.75.234 cloudkms.googleapis.com. 300 IN A 216.58.214.170 cloudkms.googleapis.com. 300 IN A 172.217.20.170 cloudkms.googleapis.com. 300 IN A 172.217.20.202 cloudkms.googleapis.com. 300 IN A 216.58.215.42 cloudkms.googleapis.com. 300 IN A 216.58.213.74 cloudkms.googleapis.com. 300 IN A 142.250.179.74 cloudkms.googleapis.com. 300 IN A 142.250.179.106 cloudkms.googleapis.com. 300 IN A 142.250.178.138 cloudkms.googleapis.com. 300 IN A 142.250.201.170 cloudkms.googleapis.com. 300 IN A 172.217.18.202 cloudkms.googleapis.com. 300 IN A 216.58.214.74 ;; Query time: 4 msec ;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP) ;; WHEN: Wed Oct 23 19:58:58 UTC 2024 ;; MSG SIZE rcvd: 260
Auf Tab 2: „client-vm“
dig cloudkms.europe-west9.rep.googleapis.com
ERWARTETES ERGEBNIS
<<>> DiG 9.18.28-1~deb12u2-Debian <<>> cloudkms.europe-west9.rep.googleapis.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2736 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 65494 ;; QUESTION SECTION: ;cloudkms.europe-west9.rep.googleapis.com. IN A ;; ANSWER SECTION: cloudkms.europe-west9.rep.googleapis.com. 3043 IN A 34.1.65.232 ;; Query time: 0 msec ;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP) ;; WHEN: Wed Oct 23 20:00:04 UTC 2024 ;; MSG SIZE rcvd: 85
Standardmäßig wird für Google APIs der Endpunkt des globalen API-Dienstes verwendet. Dieser Endpunkt wird in eine Liste öffentlicher IP-Adressen aufgelöst. Das zeigt der Dig-Befehl für cloudkms.googleapis.com. Hinweis: Die angezeigte IP-Adresse kann eine andere externe IP-Adresse sein. Das ist ganz normal.
Wenn Sie regionale Google API-Endpunkte mit PSC verwenden, können Sie die regionalen Anforderungen für API-Traffic erfüllen und die Auflösung von „öffentlich“ zu „privat“ ändern. Die Ausführung von „dig“ für cloudkms.europe-west9.rep.googleapis.com zeigt, dass die Auflösung des regionalen KSM API-Endpunkts zu diesem Zeitpunkt noch öffentlich ist.
In den folgenden Abschnitten migrieren wir von der Verwendung des globalen KMS API-Endpunkts zum regionalen Endpunkt und ändern die Auflösung mit PSC-Backends in „privat“ um.
9. PSC-NEG und Load Balancer erstellen
Wechseln Sie für den nächsten Abschnitt zurück zum ersten Tab in Cloud Shell.
Sie erstellen einen internen HTTP(S)-Load Balancer mit einer Netzwerkendpunktgruppe(NEG), die als Back-End-Dienst auf den regionalen KMS-Endpunkt für Europa verweist. Die Weiterleitungsregel des Load Balancers dient als Private Service Connect-Endpunkt(PSC).
Erstellen Sie die Netzwerk-Endpunktgruppe vom Typ „Private Service Connect“ mit dem Zieldienst „europe-west9-cloudkms.example.com“.
Über Cloud Shell
#Set the necessary variables NEG_NAME="l7psc-kms-neg" PSC_TARGET="cloudkms.europe-west9.rep.googleapis.com" #Create the Private Service Connect NEG gcloud compute network-endpoint-groups create ${NEG_NAME} \ --project=${PROJECT_ID} \ --region=${REGION} \ --network-endpoint-type=PRIVATE_SERVICE_CONNECT \ --psc-target-service=${PSC_TARGET} # Verify the NEG creation gcloud compute network-endpoint-groups describe ${NEG_NAME} \ --project=${PROJECT_ID} \ --region=${REGION}
Erstellen Sie den Back-End-Dienst für den Load Balancer.
Über Cloud Shell
# 1. Set the necessary variables BACKEND_SERVICE_NAME="l7-psc-kms" # 2. Create the backend service gcloud compute backend-services create $BACKEND_SERVICE_NAME \ --load-balancing-scheme=INTERNAL_MANAGED \ --protocol=HTTPS \ --region=$REGION \
Fügen Sie dem Backend-Dienst die NEG hinzu.
Über Cloud Shell
gcloud compute backend-services add-backend $BACKEND_SERVICE_NAME \ --network-endpoint-group=${NEG_NAME} \ --region=$REGION
Erstellen Sie die URL-Zuordnung für den Load Balancer.
Über Cloud Shell
gcloud compute url-maps create l7-psc-url-map \ --default-service=l7-psc-kms \ --region=$REGION
Erstellen Sie den Pfadabgleich für die benutzerdefinierte URL, die der Endpunkt verwenden soll.
Über Cloud Shell
gcloud compute url-maps add-path-matcher l7-psc-url-map \ --path-matcher-name=example \ --default-service=l7-psc-kms \ --region=$REGION
Erstellen Sie die Hostregel für die benutzerdefinierte URL „europe-west9-cloudkms.example.com“.
Über Cloud Shell
gcloud compute url-maps add-host-rule l7-psc-url-map \ --hosts=europe-west9-cloudkms.example.com \ --path-matcher-name=example \ --region=$REGION
Erstellen Sie den Ziel-HTTPS-Proxy für den Load Balancer. Dazu müssen Sie eine regionale SSL-Zertifikatsressource erstellen. Informationen zum Erstellen eines selbst signierten Zertifikats Wir erstellen mit openssl ein selbst signiertes Zertifikat und verwenden es, um eine regionale Zertifikatsressource in der GCP zu erstellen. Dieses Zertifikat wird vom Ziel-HTTPS-Proxy verwendet.
Über Cloud Shell
# Set environment variables export CERT_NAME="my-ssl-cert" # Generate a private key openssl genrsa -out private.key 2048 # Create a configuration file for the CSR cat > csr_config.cnf << EOF [req] default_bits = 2048 prompt = no default_md = sha256 req_extensions = req_ext distinguished_name = dn [dn] CN = example.com O = My Organization C = US [req_ext] subjectAltName = @alt_names [alt_names] DNS.1 = example.com DNS.2 = *.example.com EOF # Create a CSR using the configuration openssl req -new -key private.key -out server.csr -config csr_config.cnf # Create a self-signed certificate using the CSR openssl x509 -req -days 365 -in server.csr -signkey private.key -out server.crt \ -extfile csr_config.cnf -extensions req_ext # Verify the certificate openssl x509 -in server.crt -text -noout #Create a regional SSL certificate resource gcloud compute ssl-certificates create ${CERT_NAME} \ --region=${REGION} \ --certificate=server.crt \ --private-key=private.key #Create the target HTTPS proxy for the load balancer gcloud compute target-https-proxies create psc-http-proxy \ --region=${REGION} \ --url-map=l7-psc-url-map \ --ssl-certificates=${CERT_NAME}
Erstellen Sie die Weiterleitungsregel für den Load Balancer, der als Private Service Connect-Endpunkt fungiert. Die IP-Adresse für die Weiterleitungsregel muss zu einem regionalen Subnetz im VPC gehören, das sich in derselben Region wie der API-Endpunkt befindet, auf den Sie zugreifen.
Über Cloud Shell
# Set environment variables export PROXY_NAME="psc-http-proxy" # Create the forwarding rule gcloud compute forwarding-rules create kms-lb-rule \ --project=${PROJECT_ID} \ --region=${REGION} \ --load-balancing-scheme=INTERNAL_MANAGED \ --network=${VPC_NAME} \ --subnet=${SUBNET_NAME} \ --target-https-proxy=${PROXY_NAME} \ --target-https-proxy-region=${REGION} \ --address=10.0.0.100 \ --ports=443
10. DNS-Konfiguration
In diesem Abschnitt erstellen Sie eine private DNS-Zone für beispiel.de und einen A-Eintrag, der auf die Weiterleitungsregel verweist, die Sie im letzten Schritt erstellt haben.
Erstellen Sie eine verwaltete private DNS-Zone.
Über Cloud Shell
# Set environment variables export LB_RULE_NAME="kms-lb-rule" export DNS_ZONE_NAME="example-com-private-zone" # Create the private DNS zone gcloud dns managed-zones create ${DNS_ZONE_NAME} \ --dns-name="example.com." \ --description="Private DNS zone for example.com" \ --visibility=private \ --networks=${VPC_NAME}
Erstellen Sie einen A-Eintrag für europe-west9-cloudkms.example.com.
Über Cloud Shell
gcloud dns record-sets transaction start \ --zone=${DNS_ZONE_NAME} gcloud dns record-sets transaction add 10.0.0.100 \ --name=europe-west9-cloudkms.example.com \ --ttl=300 \ --type=A \ --zone=${DNS_ZONE_NAME} gcloud dns record-sets transaction execute \ --zone=${DNS_ZONE_NAME}
11. Über PSC eine Verbindung zur Regional KMS API herstellen
Kehren Sie auf Tab 2 zur Client-VM zurück, um tcpdump auszuführen und alle Verbindungsdetails zu sehen. Testen Sie dann die Verbindungen zum regionalen KMS-Endpunkt über das PSC-Back-End.
sudo tcpdump -i any net 10.0.0.100 or port 53 -n
Öffnen Sie einen dritten Tab in Cloud Shell und stellen Sie eine SSH-Verbindung zur Client-VM her.
# Set environment variables export PROJECT_ID=$(gcloud config get-value project) export KMS_HOSTNAME="europe-west9-cloudkms.example.com" export KEY_RING="europe-kr" export KEY_NAME="europe-key" export REGION="europe-west9" # Command to access the specific key curl -k "https://${KMS_HOSTNAME}/v1/projects/${PROJECT_ID}/locations/${REGION}/keyRings/${KEY_RING}/cryptoKeys/${KEY_NAME}" \ -H "Authorization: Bearer $(gcloud auth print-access-token)"
ERWARTETES ERGEBNIS für den Befehl „curl“ und „tcpdump“
{ "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key", "primary": { "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key/cryptoKeyVersions/1", "state": "ENABLED", "createTime": "2024-10-10T18:50:24.357027036Z", "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION", "generateTime": "2024-10-10T18:50:24.357027036Z" }, "purpose": "ENCRYPT_DECRYPT", "createTime": "2024-10-10T18:50:24.357027036Z", "versionTemplate": { "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION" }, "destroyScheduledDuration": "2592000s" } Tcpdump output listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length 262144 bytes 18:13:51.220209 lo In IP 127.0.0.1.48873 > 127.0.0.53.53: 2086+ [1au] A? europe-west9-cloudkms.example.com. (62) 18:13:51.220230 lo In IP 127.0.0.1.48873 > 127.0.0.53.53: 24619+ [1au] AAAA? europe-west9-cloudkms.example.com. (62) 18:13:51.220669 ens4 Out IP 10.0.0.2.52121 > 169.254.169.254.53: 8885+ [1au] A? europe-west9-cloudkms.example.com. (62) 18:13:51.220784 ens4 Out IP 10.0.0.2.53041 > 169.254.169.254.53: 57748+ [1au] AAAA? europe-west9-cloudkms.example.com. (62) 18:13:51.229638 ens4 In IP 169.254.169.254.53 > 10.0.0.2.52121: 8885 1/0/1 A 10.0.0.100 (78) 18:13:51.229945 lo In IP 127.0.0.53.53 > 127.0.0.1.48873: 2086 1/0/1 A 10.0.0.100 (78) 18:13:51.230068 ens4 In IP 169.254.169.254.53 > 10.0.0.2.53041: 57748 0/1/1 (155) 18:13:51.230203 lo In IP 127.0.0.53.53 > 127.0.0.1.48873: 24619 0/1/1 (155) 18:13:51.230390 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [S], seq 1606150798, win 65320, options [mss 1420,sackOK,TS val 4135800856 ecr 0,nop,wscale 7], length 0 18:13:51.232565 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [S.], seq 1041507402, ack 1606150799, win 65535, options [mss 1420,sackOK,TS val 2276748382 ecr 4135800856,nop,wscale 8], length 0 18:13:51.232583 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [.], ack 1, win 511, options [nop,nop,TS val 4135800859 ecr 2276748382], length 0 18:13:51.235494 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 1:518, ack 1, win 511, options [nop,nop,TS val 4135800862 ecr 2276748382], length 517 18:13:51.236571 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 518, win 267, options [nop,nop,TS val 2276748387 ecr 4135800862], length 0 18:13:51.239119 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1:1356, ack 518, win 267, options [nop,nop,TS val 2276748389 ecr 4135800862], length 1355 18:13:51.239140 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [.], ack 1356, win 501, options [nop,nop,TS val 4135800865 ecr 2276748389], length 0 18:13:51.240978 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 518:598, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 80 18:13:51.241266 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 598:684, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 86 18:13:51.241366 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 684:1646, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 962 18:13:51.242370 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 684, win 267, options [nop,nop,TS val 2276748392 ecr 4135800867], length 0 18:13:51.242619 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1356:1433, ack 1646, win 278, options [nop,nop,TS val 2276748393 ecr 4135800867], length 77 18:13:51.242730 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 1646:1677, ack 1433, win 501, options [nop,nop,TS val 4135800869 ecr 2276748393], length 31 18:13:51.248724 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 1677, win 278, options [nop,nop,TS val 2276748399 ecr 4135800869], length 0 18:13:51.296676 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1433:2357, ack 1677, win 278, options [nop,nop,TS val 2276748447 ecr 4135800869], length 924 18:13:51.297223 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [F.], seq 1677, ack 2357, win 501, options [nop,nop,TS val 4135800923 ecr 2276748447], length 0 18:13:51.298304 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 2357:2381, ack 1678, win 278, options [nop,nop,TS val 2276748448 ecr 4135800923], length 24 18:13:51.298305 ens4 In IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [F.], seq 2381, ack 1678, win 278, options [nop,nop,TS val 2276748448 ecr 4135800923], length 0 18:13:51.298336 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [R], seq 1606152476, win 0, length 0 18:13:51.298343 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [R], seq 1606152476, win 0, length 0
Sehen Sie sich das Fenster auf Tab 2 noch einmal an und prüfen Sie die tcpdump-Informationen. Sie sehen, dass Sie über den von Ihnen erstellten PSC-Endpunkt auf den regionalen Cloud KMS-Endpunkt zugreifen konnten und dass der regionale Endpunkt „europe-west9“ privat auf die von Ihnen erstellte verwaltete Cloud DNS-Zone verweist. Die relevanten Zeilen in der tcpdump-Ausgabe sind oben hervorgehoben und unten verlinkt:
18:13:51.229638 ens4 In IP 169.254.169.254.53 > 10.0.0.2.52121: 8885 1/0/1 A 10.0.0.100 (78)
(Der GCP-Metadatenserver antwortet mit dem A-Eintrag: 10.0.0.100 – die IP-Adresse des Load Balancers. Die DNS-Auflösung funktioniert ordnungsgemäß. „europe-west9-cloudkms.beispiel.de“ wird in „10.0.0.100“ aufgelöst, die IP-Adresse des Load Balancers.
18:13:51.230390 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [S], seq 1606150798, win 65320, options [mss 1420,sackOK,TS val 4135800856 ecr 0,nop,wscale 7], length 0
(Dies ist der TCP-Handshake für die HTTPS-Verbindung zur Load Balancer-IP-Adresse.)
Auf Tab 3: „client-vm“
dig europe-west9-cloudkms.example.com
ERWARTETES ERGEBNIS
; <<>> DiG 9.18.28-1~deb12u2-Debian <<>> europe-west9-cloudkms.example.com ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7008 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 65494 ;; QUESTION SECTION: ;europe-west9-cloudkms.example.com. IN A ;; ANSWER SECTION: europe-west9-cloudkms.example.com. 300 IN A 10.0.0.100 ;; Query time: 12 msec ;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP) ;; WHEN: Fri Oct 11 20:03:00 UTC 2024 ;; MSG SIZE rcvd: 78
Die Ausgabe des Befehls „dig“ zeigt, dass die benutzerdefinierte URL, die wir für europe-west9-cloudkms.example.com erstellt haben, korrekt in 10.0.0.100 aufgelöst wird, die IP-Adresse Ihres internen Load Balancers. Anfragen an europe-west9-cloudkms.beispiel.de werden an Ihren internen Load Balancer weitergeleitet, der sie dann über Private Service Connect an den regionalen KMS-Endpunkt weiterleitet.
Sie können jetzt beide SSH-Tabs für die Client-VM schließen.
12. Schritte zur Bereinigung
Lab-Komponenten über ein einzelnes Cloud Shell-Terminal löschen
# Set environment variables export PROJECT_ID=$(gcloud config get-value project) export PROJECT_NUMBER=$(gcloud projects describe ${PROJECT_ID} --format="value(projectNumber)") export REGION=europe-west9 export ZONE=europe-west9-a export VPC_NAME="consumer-vpc" export SUBNET_NAME="consumer-subnet-1" export NEG_NAME="l7psc-kms-neg" export BACKEND_SERVICE_NAME="l7-psc-kms" export CERT_NAME="my-ssl-cert" export PROXY_NAME="psc-http-proxy" export LB_RULE_NAME="kms-lb-rule" export DNS_ZONE_NAME="example-com-private-zone" # Delete DNS records and zone gcloud dns record-sets delete europe-west9-cloudkms.example.com. \ --zone=${DNS_ZONE_NAME} --type=A --quiet gcloud dns managed-zones delete ${DNS_ZONE_NAME} --quiet # Delete Load Balancer components gcloud compute forwarding-rules delete ${LB_RULE_NAME} --region=${REGION} --quiet gcloud compute target-https-proxies delete ${PROXY_NAME} --region=${REGION} --quiet gcloud compute url-maps delete l7-psc-url-map --region=${REGION} --quiet gcloud compute backend-services delete ${BACKEND_SERVICE_NAME} --region=${REGION} --quiet gcloud compute network-endpoint-groups delete ${NEG_NAME} --region=${REGION} --quiet # Delete SSL certificate gcloud compute ssl-certificates delete ${CERT_NAME} --region=${REGION} --quiet # Delete VM instance gcloud compute instances delete client-vm --zone=${ZONE} --quiet # Delete firewall rules gcloud compute firewall-rules delete allow-ssh-iap --quiet # Delete Cloud NAT and router gcloud compute routers nats delete europe-nat --router=crnat --region=${REGION} --quiet gcloud compute routers delete crnat --region=${REGION} --quiet # Delete subnets and VPC gcloud compute networks subnets delete ${SUBNET_NAME} --region=${REGION} --quiet gcloud compute networks subnets delete eu-west9-proxy-subnet --region=${REGION} --quiet gcloud compute networks delete ${VPC_NAME} --quiet # Schedule KMS key for deletion and provide instructions for keyring deletion gcloud kms keys remove-iam-policy-binding europe-key \ --location ${REGION} \ --keyring europe-kr \ --member serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com \ --role roles/cloudkms.admin gcloud kms keys versions destroy 1 --location=${REGION} --keyring=europe-kr --key=europe-key # Disable services (optional, only if you want to completely disable these APIs) gcloud services disable compute.googleapis.com --force gcloud services disable servicedirectory.googleapis.com --force gcloud services disable dns.googleapis.com --force gcloud services disable cloudkms.googleapis.com --force # Clean up local files rm -f private.key server.csr server.crt csr_config.cnf startup.sh
13. Glückwunsch!
Herzlichen Glückwunsch zum Abschluss des Codelabs.