Private Service Connect: como usar back-ends de PSC para acessar APIs regionais do Google

1. Introdução

O Private Service Connect é um recurso da rede do Google Cloud que permite que consumidores acessem serviços de produtores. Isso inclui a capacidade de se conectar às APIs do Google por um endpoint particular hospedado na VPC do usuário(normalmente consumidor).

Além disso, os back-ends do PSC podem ser usados com balanceadores de carga de proxy do Google Cloud para apontar para APIs específicas da região. O uso de back-ends do PSC oferece controles mais granulares do lado do consumidor, como:

  • Como escolher quais serviços da API Google estão disponíveis usando um mapa de URL
  • Observabilidade mais detalhada
  • Integração do Cloud Armor
  • URLs personalizados
  • Gerenciamento de tráfego avançado

A lista de serviços disponíveis e as APIs regionais podem ser encontradas aqui.

Neste codelab, você vai criar um back-end de PSC que aponta para a API regional do Cloud KMS e testar a conectividade com essa API.

O que você vai aprender

  • Crie um keyring e uma chave do Cloud Key Management Service (KMS).
  • Criar um balanceador de carga de aplicativo interno com um back-end PSC que aponta para uma API regional do Cloud KMS
  • Criação de uma zona particular gerenciada do Cloud DNS e um registro A.
  • Acessar o Cloud KMS regional

O que é necessário

  • Um projeto do Google Cloud com permissões de "Proprietário" ou "Editor".

2. Topologia do codelab

1a18ae253213e215.png

Uma VPC de consumidor será criada com uma sub-rede na região europe-west9 para hospedar uma VM, a regra de encaminhamento do balanceador de carga de aplicativo regional interno, o back-end do PSC e uma sub-rede somente proxy para uso com o balanceador de carga. Vamos criar um keyring e uma chave no sistema de gerenciamento de chaves (KMS, na sigla em inglês) do Cloud na região europe-west. Em seguida, vamos criar o balanceador de carga e o back-end do PSC para resolver a API KMS regional em europe-west9.

3. Configuração e requisitos

Configuração de ambiente autoguiada

  1. Faça login no Console do Google Cloud e crie um novo projeto ou reutilize um existente. Crie uma conta do Gmail ou do Google Workspace, se ainda não tiver uma.

fbef9caa1602edd0.png

a99b7ace416376c4.png

5e3ff691252acf41.png

  • O Nome do projeto é o nome de exibição para os participantes do projeto. É uma string de caracteres não usada pelas APIs do Google e pode ser atualizada quando você quiser.
  • O ID do projeto precisa ser exclusivo em todos os projetos do Google Cloud e não pode ser mudado após a definição. O console do Cloud gera automaticamente uma string exclusiva. Em geral, não importa o que seja. Na maioria dos codelabs, é necessário fazer referência ao ID do projeto, normalmente identificado como PROJECT_ID. Se você não gostar do ID gerado, crie outro aleatório. Se preferir, teste o seu e confira se ele está disponível. Ele não pode ser mudado após essa etapa e permanece durante o projeto.
  • Para sua informação, há um terceiro valor, um Número do projeto, que algumas APIs usam. Saiba mais sobre esses três valores na documentação.
  1. Em seguida, ative o faturamento no console do Cloud para usar os recursos/APIs do Cloud. A execução deste codelab não vai ser muito cara, se tiver algum custo. Para encerrar os recursos e evitar cobranças além deste tutorial, exclua os recursos criados ou exclua o projeto. Novos usuários do Google Cloud estão qualificados para o programa de US$ 300 de avaliação sem custos.

Inicie o Cloud Shell

Embora o Google Cloud e o Spanner possam ser operados remotamente do seu laptop, neste codelab usaremos o Google Cloud Shell, um ambiente de linha de comando executado no Cloud.

No Console do Google Cloud, clique no ícone do Cloud Shell na barra de ferramentas superior à direita:

55efc1aaa7a4d3ad.png

O provisionamento e a conexão com o ambiente levarão apenas alguns instantes para serem concluídos: Quando o processamento for concluído, você verá algo como:

7ffe5cbb04455448.png

Essa máquina virtual contém todas as ferramentas de desenvolvimento necessárias. Ela oferece um diretório principal persistente de 5 GB, além de ser executada no Google Cloud. Isso aprimora o desempenho e a autenticação da rede. Neste codelab, todo o trabalho pode ser feito com um navegador. Você não precisa instalar nada.

4. Antes de começar

Ativar APIs

No Cloud Shell, verifique se o ID do projeto está configurado:

gcloud config list project
gcloud config set project <project-id>
export PROJECT_ID=$(gcloud config get-value project)
export REGION=europe-west9
export ZONE=europe-west9-a
echo $PROJECT_ID
echo $REGION
echo $ZONE

Ativar todos os serviços necessários

gcloud services enable compute.googleapis.com
gcloud services enable servicedirectory.googleapis.com
gcloud services enable dns.googleapis.com
gcloud services enable cloudkms.googleapis.com

5. Criar rede VPC, sub-redes e regras de firewall

Criar rede VPC

No Cloud Shell

# Set environment variables

export VPC_NAME="consumer-vpc"
export SUBNET_NAME="consumer-subnet-1"

# Create VPC network

gcloud compute networks create ${VPC_NAME} \
    --subnet-mode=custom \
    --bgp-routing-mode=regional

Criar sub-redes

No Cloud Shell

gcloud compute networks subnets create ${SUBNET_NAME} \
    --network=${VPC_NAME} \
    --region=${REGION} \
    --range=10.0.0.0/24 \
    --enable-private-ip-google-access

Neste laboratório, você vai criar um balanceador de carga regional L7 interno para apontar para back-ends de API regionais. Esse balanceador de carga é um balanceador de proxy, portanto, você precisa criar uma "sub-rede de proxy" dedicada ao balanceador de carga para executar o proxy. Confira mais informações sobre a sub-rede somente proxy neste link.

No Cloud Shell

gcloud compute networks subnets create eu-west9-proxy-subnet \
--network=${VPC_NAME} \
--region=${REGION} \
--range=10.100.100.0/24 \
--purpose=REGIONAL_MANAGED_PROXY \
--role=ACTIVE

Criar regras de firewall

Neste laboratório, você vai usar o IAP para se conectar às instâncias que criar. Se você preferir não usar o IAP, pule esta etapa e adicione endereços IP públicos à instância e crie uma regra de firewall que permita a entrada na porta TCP 22 de 0.0.0.0/0.

Para permitir que o IAP se conecte às suas instâncias de VM, crie uma regra de firewall que:

  • Aplica-se a todas as instâncias da VM que você quer que sejam acessíveis usando o IAP.
  • Permite o tráfego de entrada do intervalo de IP 35.235.240.0/20. Esse intervalo contém todos os endereços IP que o IAP usa para o encaminhamento de TCP.

No Cloud Shell

gcloud compute firewall-rules create allow-ssh-iap \
    --network=${VPC_NAME} \
--allow tcp:22 \
--source-ranges=35.235.240.0/20

6. Criar Cloud NAT

É necessário criar um Cloud NAT para fazer o download de distribuições de pacotes do Linux.

Criar Cloud Router

No Cloud Shell

gcloud compute routers create crnat \
    --network=${VPC_NAME} \
    --region=${REGION}

Criar o Cloud NAT

No Cloud Shell

gcloud compute routers nats create europe-nat \
    --router=crnat \
    --auto-allocate-nat-external-ips \
    --nat-all-subnet-ip-ranges \
    --enable-logging \
    --region=${REGION}

7. Criar um keyring e uma chave de gerenciamento de chaves

No Cloud Shell

gcloud kms keyrings create europe-kr \
    --location ${REGION}

No Cloud Shell

gcloud kms keys create europe-key \
    --location ${REGION} \
    --keyring europe-kr \
    --purpose encryption

No Cloud Shell, confirme se o keyring e a chave foram criados na região europe-west.

gcloud kms keys list \
    --location ${REGION} \
    --keyring europe-kr

RESULTADO ESPERADO

NAME: projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key
PURPOSE: ENCRYPT_DECRYPT
ALGORITHM: GOOGLE_SYMMETRIC_ENCRYPTION
PROTECTION_LEVEL: SOFTWARE
LABELS: 
PRIMARY_ID: 1
PRIMARY_STATE: ENABLED

Anote o nome do caminho completo fornecido para as chaves, porque você vai usá-lo para se conectar mais tarde.

8. Criar uma VM cliente e se conectar à API KMS

Em seguida, você vai criar uma VM cliente, fazer SSH na VM e testar a resolução da API KMS global. Esse teste representa a opção padrão para APIs globais de resolução do Google.

No Cloud Shell

#Create the startup script

touch startup.sh

#Open the startup.sh file using a text editor of your choice (e.g., nano, vim, gedit, etc.)

nano startup.sh 

#Paste the following script content into the startup.sh file

#! /bin/bash 
sudo apt-get update 
sudo apt-get install dnsutils -y 
sudo apt-get install tcpdump -y

#Save the changes you made to the startup.sh file
#Use the chmod command to make the script executable

chmod +x startup.sh

#Create the VM instance

gcloud compute instances create client-vm \
    --network="${VPC_NAME}" \
    --subnet="${SUBNET_NAME}" \
    --zone="europe-west9-a" \
    --machine-type="e2-medium" \
    --no-address \
    --scopes="https://www.googleapis.com/auth/cloud-platform" \
    --image-family="debian-12" \
    --image-project="debian-cloud" \
    --metadata-from-file="startup-script=./startup.sh" 

Em seguida, atualize a conta de serviço padrão do Compute para ter acesso à chave do KMS que você criou. A conta de serviço padrão do Compute vai estar no formato <Project_Number> -compute@developer.gserviceaccount.com. Para conferir o número do projeto, execute o comando a seguir no Cloud Shell e copie o número na última linha dos resultados retornados.

 gcloud projects describe $PROJECT_ID

Atualize a conta de serviço padrão do Compute para ter acesso à chave do KMS criada.

No Cloud Shell

gcloud kms keys add-iam-policy-binding europe-key \
    --location $REGION \
    --keyring europe-kr \
    --member serviceAccount:<project_number>-compute@developer.gserviceaccount.com \
    --role roles/cloudkms.admin

Crie outro terminal do Cloud Shell clicando em + (captura de tela abaixo)

a36edc967333315a.png

Na guia 2, crie um túnel pelo IAP para SSH na VM do cliente. As variáveis de ambiente não serão transferidas, e você precisará adicionar o ID do projeto ao comando abaixo.

No Cloud Shell

# Set the environment variable

export PROJECT_ID=$(gcloud config get-value project)

# ssh into the client-vm

gcloud beta compute ssh --zone europe-west9-a "client-vm" \
--tunnel-through-iap \
--project $PROJECT_ID

Conecte-se à API KMS global usando o nome da chave KMS que você anotou anteriormente.

Na guia 2, "client-vm"

# Store the access token in a variable

TOKEN=$(gcloud auth print-access-token)

# Run the full command with maximum verbosity
curl -v \
-H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
'https://cloudkms.googleapis.com/v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key'

RESULTADO ESPERADO

*   Trying 216.58.214.74:443...
* Connected to cloudkms.googleapis.com (216.58.214.74) port 443 (#0)
* ALPN: offers h2,http/1.1
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
*  CAfile: /etc/ssl/certs/ca-certificates.crt
*  CApath: /etc/ssl/certs
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
* TLSv1.3 (IN), TLS handshake, Certificate (11):
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
* TLSv1.3 (IN), TLS handshake, Finished (20):
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
* TLSv1.3 (OUT), TLS handshake, Finished (20):
* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384
* ALPN: server accepted h2
* Server certificate:
*  subject: CN=upload.video.google.com
*  start date: Aug 26 07:12:45 2024 GMT
*  expire date: Nov 18 07:12:44 2024 GMT
*  subjectAltName: host "cloudkms.googleapis.com" matched cert's "*.googleapis.com"
*  issuer: C=US; O=Google Trust Services; CN=WR2
*  SSL certificate verify ok.
* using HTTP/2
* h2h3 [:method: GET]
* h2h3 [:path: /v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key]
* h2h3 [:scheme: https]
* h2h3 [:authority: cloudkms.googleapis.com]
* h2h3 [user-agent: curl/7.88.1]
* h2h3 [accept: */*]
* h2h3 [authorization: Bearer dsnkjfdnvjfd
* h2h3 [content-type: application/json]
* Using Stream ID: 1 (easy handle 0x55ed8bb7ece0)
> GET /v1/projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key HTTP/2
> Host: cloudkms.googleapis.com
> user-agent: curl/7.88.1
> accept: */*
> authorization: Bearer dsnkjfdnvjfd
> content-type: application/json
>
< HTTP/2 200
< content-type: application/json; charset=UTF-8
< vary: X-Origin
< vary: Referer
< vary: Origin,Accept-Encoding
< date: Tue, 24 Sep 2024 18:25:42 GMT
< server: ESF
< cache-control: private
< x-xss-protection: 0
< x-frame-options: SAMEORIGIN
< x-content-type-options: nosniff
< accept-ranges: none
<
{
  "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key",
  "primary": {
    "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key/cryptoKeyVersions/1",
    "state": "ENABLED",
    "createTime": "2024-09-24T17:56:01.905156045Z",
    "protectionLevel": "SOFTWARE",
    "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION",
    "generateTime": "2024-09-24T17:56:01.905156045Z"
  },
  "purpose": "ENCRYPT_DECRYPT",
  "createTime": "2024-09-24T17:56:01.905156045Z",
  "versionTemplate": {
    "protectionLevel": "SOFTWARE",
    "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION"
  },
  "destroyScheduledDuration": "2592000s"
}
* Connection #0 to host cloudkms.googleapis.com left intact

Verifique onde o DNS resolve o endpoint do KMS.

Na guia 2, "client-vm"

dig cloudkms.googleapis.com

RESULTADO ESPERADO

 <<>> DiG 9.18.28-1~deb12u2-Debian <<>> cloudkms.googleapis.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62617
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;cloudkms.googleapis.com.       IN      A

;; ANSWER SECTION:
cloudkms.googleapis.com. 300    IN      A       142.250.74.234
cloudkms.googleapis.com. 300    IN      A       142.250.75.234
cloudkms.googleapis.com. 300    IN      A       216.58.214.170
cloudkms.googleapis.com. 300    IN      A       172.217.20.170
cloudkms.googleapis.com. 300    IN      A       172.217.20.202
cloudkms.googleapis.com. 300    IN      A       216.58.215.42
cloudkms.googleapis.com. 300    IN      A       216.58.213.74
cloudkms.googleapis.com. 300    IN      A       142.250.179.74
cloudkms.googleapis.com. 300    IN      A       142.250.179.106
cloudkms.googleapis.com. 300    IN      A       142.250.178.138
cloudkms.googleapis.com. 300    IN      A       142.250.201.170
cloudkms.googleapis.com. 300    IN      A       172.217.18.202
cloudkms.googleapis.com. 300    IN      A       216.58.214.74

;; Query time: 4 msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Wed Oct 23 19:58:58 UTC 2024
;; MSG SIZE  rcvd: 260

Na guia 2, "client-vm"

dig cloudkms.europe-west9.rep.googleapis.com

RESULTADO ESPERADO

<<>> DiG 9.18.28-1~deb12u2-Debian <<>> cloudkms.europe-west9.rep.googleapis.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2736
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;cloudkms.europe-west9.rep.googleapis.com. IN A

;; ANSWER SECTION:
cloudkms.europe-west9.rep.googleapis.com. 3043 IN A 34.1.65.232

;; Query time: 0 msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Wed Oct 23 20:00:04 UTC 2024
;; MSG SIZE  rcvd: 85

O comportamento padrão das APIs do Google é usar o endpoint do serviço da API Global. Esse endpoint será resolvido para uma lista de IPs públicos. O comando dig para cloudkms.googleapis.com mostra isso. Observação: o endereço IP mostrado pode ser um endereço IP externo diferente. Esse é o comportamento normal das APIs do Google.

Ao usar endpoints regionais das APIs do Google com o PSC, você atende aos requisitos regionais de tráfego de API e muda a resolução de público para privado. A pesquisa em cloudkms.europe-west9.rep.googleapis.com mostra que, neste ponto, a resolução para o endpoint regional da API KSM ainda é pública.

Nas próximas seções, vamos migrar do uso do endpoint da API KMS global para o endpoint regional e mudar a resolução para privado usando back-ends do PSC.

9. Criar o PSC NEG e o balanceador de carga

Para a próxima seção, volte para a primeira guia no Cloud Shell.

Você vai criar um balanceador de carga HTTP(S) interno com um grupo de endpoints de rede(NEG) que aponte para o endpoint regional do KMS na Europa como um serviço de back-end. A regra de encaminhamento do balanceador de carga funciona como o endpoint do Private Service Connect(PSC).

Crie o grupo de endpoints de rede (NEG) com o tipo Private Service Connect e o serviço de destino europe-west9-cloudkms.example.com.

No Cloud Shell

#Set the necessary variables

NEG_NAME="l7psc-kms-neg"
PSC_TARGET="cloudkms.europe-west9.rep.googleapis.com"

#Create the Private Service Connect NEG

gcloud compute network-endpoint-groups create ${NEG_NAME} \
    --project=${PROJECT_ID} \
    --region=${REGION} \
    --network-endpoint-type=PRIVATE_SERVICE_CONNECT \
    --psc-target-service=${PSC_TARGET}

# Verify the NEG creation

gcloud compute network-endpoint-groups describe ${NEG_NAME} \
    --project=${PROJECT_ID} \
    --region=${REGION}

Crie o serviço de back-end para o balanceador de carga.

No Cloud Shell

# 1. Set the necessary variables

BACKEND_SERVICE_NAME="l7-psc-kms"

# 2. Create the backend service

gcloud compute backend-services create $BACKEND_SERVICE_NAME \
  --load-balancing-scheme=INTERNAL_MANAGED \
  --protocol=HTTPS \
  --region=$REGION \

Adicione o NEG ao serviço de back-end.

No Cloud Shell

gcloud compute backend-services add-backend $BACKEND_SERVICE_NAME \
  --network-endpoint-group=${NEG_NAME} \
  --region=$REGION

Crie o mapa de URL para o balanceador de carga.

No Cloud Shell

gcloud compute url-maps create l7-psc-url-map \
  --default-service=l7-psc-kms \
  --region=$REGION

Crie o Path Matcher para o URL personalizado que o endpoint vai usar.

No Cloud Shell

gcloud compute url-maps add-path-matcher l7-psc-url-map \
 --path-matcher-name=example \
 --default-service=l7-psc-kms \
 --region=$REGION

Crie a regra de host para o URL personalizado europe-west9-cloudkms.example.com.

No Cloud Shell

gcloud compute url-maps add-host-rule l7-psc-url-map \
--hosts=europe-west9-cloudkms.example.com \
--path-matcher-name=example \
--region=$REGION

Crie o proxy HTTPS de destino para o balanceador de carga. Para isso, é necessário criar um recurso de certificado SSL regional. Confira as etapas para criar um certificado autoassinado aqui. Vamos criar um certificado autoassinado usando o openssl e usá-lo para criar um recurso de certificado regional no GCP. O proxy HTTPS de destino vai usar esse certificado.

No Cloud Shell

# Set environment variables

export CERT_NAME="my-ssl-cert"

# Generate a private key

openssl genrsa -out private.key 2048

#  Create a configuration file for the CSR

cat > csr_config.cnf << EOF
[req]
default_bits = 2048
prompt = no
default_md = sha256
req_extensions = req_ext
distinguished_name = dn

[dn]
CN = example.com
O = My Organization
C = US

[req_ext]
subjectAltName = @alt_names

[alt_names]
DNS.1 = example.com
DNS.2 = *.example.com
EOF

# Create a CSR using the configuration

openssl req -new -key private.key -out server.csr -config csr_config.cnf

# Create a self-signed certificate using the CSR

openssl x509 -req -days 365 -in server.csr -signkey private.key -out server.crt \
    -extfile csr_config.cnf -extensions req_ext

# Verify the certificate

openssl x509 -in server.crt -text -noout

#Create a regional SSL certificate resource 

gcloud compute ssl-certificates create ${CERT_NAME} \
    --region=${REGION} \
    --certificate=server.crt \
    --private-key=private.key

#Create the target HTTPS proxy for the load balancer 

gcloud compute target-https-proxies create psc-http-proxy \
    --region=${REGION} \
    --url-map=l7-psc-url-map \
    --ssl-certificates=${CERT_NAME}

Crie a regra de encaminhamento para o balanceador de carga, que vai atuar como o endpoint do Private Service Connect. O endereço IP da regra de encaminhamento precisa pertencer a uma sub-rede regional na VPC que esteja na mesma região do endpoint da API que você está acessando.

No Cloud Shell

# Set environment variables

export PROXY_NAME="psc-http-proxy"

# Create the forwarding rule

gcloud compute forwarding-rules create kms-lb-rule \
    --project=${PROJECT_ID} \
    --region=${REGION} \
    --load-balancing-scheme=INTERNAL_MANAGED \
    --network=${VPC_NAME} \
    --subnet=${SUBNET_NAME} \
    --target-https-proxy=${PROXY_NAME} \
    --target-https-proxy-region=${REGION} \
    --address=10.0.0.100 \
    --ports=443

10. Configuração do DNS

Nesta seção, você vai criar uma zona de DNS particular para example.com e um registro A que aponte para a regra de encaminhamento criada na última etapa.

Crie uma zona particular do DNS gerenciado.

No Cloud Shell

# Set environment variables

export LB_RULE_NAME="kms-lb-rule"
export DNS_ZONE_NAME="example-com-private-zone"

# Create the private DNS zone

gcloud dns managed-zones create ${DNS_ZONE_NAME} \
    --dns-name="example.com." \
    --description="Private DNS zone for example.com" \
    --visibility=private \
    --networks=${VPC_NAME}

Crie um registro A para europe-west9-cloudkms.example.com.

No Cloud Shell

gcloud dns record-sets transaction start \
   --zone=${DNS_ZONE_NAME}

gcloud dns record-sets transaction add 10.0.0.100 \
   --name=europe-west9-cloudkms.example.com \
   --ttl=300 \
   --type=A \
   --zone=${DNS_ZONE_NAME}

gcloud dns record-sets transaction execute \
   --zone=${DNS_ZONE_NAME}

11. Conectar-se à API Regional do KMS pelo PSC

Volte para a VM cliente na guia 2 para executar o tcpdump e conferir todos os detalhes da conexão e testar as conexões com o endpoint regional do KMS pelo back-end do PSC.

sudo tcpdump -i any net 10.0.0.100 or port 53 -n

Abra uma terceira guia no Cloud Shell e faça SSH na VM do cliente.

# Set environment variables

export PROJECT_ID=$(gcloud config get-value project)
export KMS_HOSTNAME="europe-west9-cloudkms.example.com"
export KEY_RING="europe-kr"
export KEY_NAME="europe-key"
export REGION="europe-west9"

# Command to access the specific key

curl -k "https://${KMS_HOSTNAME}/v1/projects/${PROJECT_ID}/locations/${REGION}/keyRings/${KEY_RING}/cryptoKeys/${KEY_NAME}" \
  -H "Authorization: Bearer $(gcloud auth print-access-token)"

RESULTADO ESPERADO para o comando curl + TCPDUMP

{
  "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key",
  "primary": {
    "name": "projects/<project-id>/locations/europe-west9/keyRings/europe-kr/cryptoKeys/europe-key/cryptoKeyVersions/1",
    "state": "ENABLED",
    "createTime": "2024-10-10T18:50:24.357027036Z",
    "protectionLevel": "SOFTWARE",
    "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION",
    "generateTime": "2024-10-10T18:50:24.357027036Z"
  },
  "purpose": "ENCRYPT_DECRYPT",
  "createTime": "2024-10-10T18:50:24.357027036Z",
  "versionTemplate": {
    "protectionLevel": "SOFTWARE",
    "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION"
  },
  "destroyScheduledDuration": "2592000s"
}


Tcpdump output

listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length 262144 bytes
18:13:51.220209 lo    In  IP 127.0.0.1.48873 > 127.0.0.53.53: 2086+ [1au] A? europe-west9-cloudkms.example.com. (62)
18:13:51.220230 lo    In  IP 127.0.0.1.48873 > 127.0.0.53.53: 24619+ [1au] AAAA? europe-west9-cloudkms.example.com. (62)
18:13:51.220669 ens4  Out IP 10.0.0.2.52121 > 169.254.169.254.53: 8885+ [1au] A? europe-west9-cloudkms.example.com. (62)
18:13:51.220784 ens4  Out IP 10.0.0.2.53041 > 169.254.169.254.53: 57748+ [1au] AAAA? europe-west9-cloudkms.example.com. (62)
18:13:51.229638 ens4  In  IP 169.254.169.254.53 > 10.0.0.2.52121: 8885 1/0/1 A 10.0.0.100 (78)
18:13:51.229945 lo    In  IP 127.0.0.53.53 > 127.0.0.1.48873: 2086 1/0/1 A 10.0.0.100 (78)
18:13:51.230068 ens4  In  IP 169.254.169.254.53 > 10.0.0.2.53041: 57748 0/1/1 (155)
18:13:51.230203 lo    In  IP 127.0.0.53.53 > 127.0.0.1.48873: 24619 0/1/1 (155)
18:13:51.230390 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [S], seq 1606150798, win 65320, options [mss 1420,sackOK,TS val 4135800856 ecr 0,nop,wscale 7], length 0
18:13:51.232565 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [S.], seq 1041507402, ack 1606150799, win 65535, options [mss 1420,sackOK,TS val 2276748382 ecr 4135800856,nop,wscale 8], length 0
18:13:51.232583 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [.], ack 1, win 511, options [nop,nop,TS val 4135800859 ecr 2276748382], length 0
18:13:51.235494 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 1:518, ack 1, win 511, options [nop,nop,TS val 4135800862 ecr 2276748382], length 517
18:13:51.236571 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 518, win 267, options [nop,nop,TS val 2276748387 ecr 4135800862], length 0
18:13:51.239119 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1:1356, ack 518, win 267, options [nop,nop,TS val 2276748389 ecr 4135800862], length 1355
18:13:51.239140 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [.], ack 1356, win 501, options [nop,nop,TS val 4135800865 ecr 2276748389], length 0
18:13:51.240978 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 518:598, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 80
18:13:51.241266 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 598:684, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 86
18:13:51.241366 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 684:1646, ack 1356, win 501, options [nop,nop,TS val 4135800867 ecr 2276748389], length 962
18:13:51.242370 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 684, win 267, options [nop,nop,TS val 2276748392 ecr 4135800867], length 0
18:13:51.242619 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1356:1433, ack 1646, win 278, options [nop,nop,TS val 2276748393 ecr 4135800867], length 77
18:13:51.242730 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [P.], seq 1646:1677, ack 1433, win 501, options [nop,nop,TS val 4135800869 ecr 2276748393], length 31
18:13:51.248724 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [.], ack 1677, win 278, options [nop,nop,TS val 2276748399 ecr 4135800869], length 0
18:13:51.296676 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 1433:2357, ack 1677, win 278, options [nop,nop,TS val 2276748447 ecr 4135800869], length 924
18:13:51.297223 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [F.], seq 1677, ack 2357, win 501, options [nop,nop,TS val 4135800923 ecr 2276748447], length 0
18:13:51.298304 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [P.], seq 2357:2381, ack 1678, win 278, options [nop,nop,TS val 2276748448 ecr 4135800923], length 24
18:13:51.298305 ens4  In  IP 10.0.0.100.443 > 10.0.0.2.59474: Flags [F.], seq 2381, ack 1678, win 278, options [nop,nop,TS val 2276748448 ecr 4135800923], length 0
18:13:51.298336 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [R], seq 1606152476, win 0, length 0
18:13:51.298343 ens4  Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [R], seq 1606152476, win 0, length 0


Verifique novamente a janela da guia 2 e inspecione as informações do tcpdump. Você vai notar que conseguiu acessar o endpoint regional do Cloud KMS pelo endpoint PSC que criou e que o endpoint regional europe-west9 é resolvido de forma particular para a zona do Cloud DNS gerenciado que você criou. As linhas relevantes na saída do tcpdump estão destacadas acima e referenciadas abaixo:

18:13:51.229638 ens4 In IP 169.254.169.254.53 > 10.0.0.2.52121: 8885 1/0/1 A 10.0.0.100 (78) (O servidor de metadados do GCP responde com o registro A: 10.0.0.100, o IP do balanceador de carga. A resolução de DNS está funcionando corretamente. europe-west9-cloudkms.example.com é resolvido para 10.0.0.100, que é o IP do balanceador de carga.

18:13:51.230390 ens4 Out IP 10.0.0.2.59474 > 10.0.0.100.443: Flags [S], seq 1606150798, win 65320, options [mss 1420,sackOK,TS val 4135800856 ecr 0,nop,wscale 7], length 0 (Isso mostra o handshake TCP para a conexão HTTPS com o IP do balanceador de carga)

Na guia 3, client-vm

dig europe-west9-cloudkms.example.com

RESULTADO ESPERADO

; <<>> DiG 9.18.28-1~deb12u2-Debian <<>> europe-west9-cloudkms.example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7008
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:
;europe-west9-cloudkms.example.com. IN  A

;; ANSWER SECTION:
europe-west9-cloudkms.example.com. 300 IN A     10.0.0.100

;; Query time: 12 msec
;; SERVER: 127.0.0.53#53(127.0.0.53) (UDP)
;; WHEN: Fri Oct 11 20:03:00 UTC 2024
;; MSG SIZE  rcvd: 78

A saída do comando "dig" mostra que o URL personalizado que criamos para europe-west9-cloudkms.example.com é resolvido corretamente para 10.0.0.100, que é o IP do balanceador de carga interno. As solicitações para europe-west9-cloudkms.example.com serão direcionadas ao balanceador de carga interno, que as encaminha para o endpoint regional do KMS pelo Private Service Connect.

Agora você pode fechar as duas guias SSH para a VM do cliente.

12. Etapas de limpeza

Excluir componentes do laboratório em um único terminal do Cloud Shell

# Set environment variables

export PROJECT_ID=$(gcloud config get-value project)
export PROJECT_NUMBER=$(gcloud projects describe ${PROJECT_ID} --format="value(projectNumber)")
export REGION=europe-west9
export ZONE=europe-west9-a
export VPC_NAME="consumer-vpc"
export SUBNET_NAME="consumer-subnet-1"
export NEG_NAME="l7psc-kms-neg"
export BACKEND_SERVICE_NAME="l7-psc-kms"
export CERT_NAME="my-ssl-cert"
export PROXY_NAME="psc-http-proxy"
export LB_RULE_NAME="kms-lb-rule"
export DNS_ZONE_NAME="example-com-private-zone"

#  Delete DNS records and zone

gcloud dns record-sets delete europe-west9-cloudkms.example.com. \
    --zone=${DNS_ZONE_NAME} --type=A --quiet
gcloud dns managed-zones delete ${DNS_ZONE_NAME} --quiet

#  Delete Load Balancer components

gcloud compute forwarding-rules delete ${LB_RULE_NAME} --region=${REGION} --quiet
gcloud compute target-https-proxies delete ${PROXY_NAME} --region=${REGION} --quiet
gcloud compute url-maps delete l7-psc-url-map --region=${REGION} --quiet
gcloud compute backend-services delete ${BACKEND_SERVICE_NAME} --region=${REGION} --quiet
gcloud compute network-endpoint-groups delete ${NEG_NAME} --region=${REGION} --quiet

# Delete SSL certificate

gcloud compute ssl-certificates delete ${CERT_NAME} --region=${REGION} --quiet

#  Delete VM instance

gcloud compute instances delete client-vm --zone=${ZONE} --quiet

#  Delete firewall rules

gcloud compute firewall-rules delete allow-ssh-iap --quiet

# Delete Cloud NAT and router

gcloud compute routers nats delete europe-nat --router=crnat --region=${REGION} --quiet
gcloud compute routers delete crnat --region=${REGION} --quiet

#  Delete subnets and VPC

gcloud compute networks subnets delete ${SUBNET_NAME} --region=${REGION} --quiet
gcloud compute networks subnets delete eu-west9-proxy-subnet --region=${REGION} --quiet
gcloud compute networks delete ${VPC_NAME} --quiet

# Schedule KMS key for deletion and provide instructions for keyring deletion

gcloud kms keys remove-iam-policy-binding europe-key \
    --location ${REGION} \
    --keyring europe-kr \
    --member serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com \
    --role roles/cloudkms.admin

gcloud kms keys versions destroy 1 --location=${REGION} --keyring=europe-kr --key=europe-key

#  Disable services (optional, only if you want to completely disable these APIs)

gcloud services disable compute.googleapis.com --force
gcloud services disable servicedirectory.googleapis.com --force
gcloud services disable dns.googleapis.com --force
gcloud services disable cloudkms.googleapis.com --force

#  Clean up local files

rm -f private.key server.csr server.crt csr_config.cnf startup.sh

13. Parabéns!

Parabéns por concluir o codelab.