Come ottimizzare un modello LLM utilizzando i job Cloud Run

Come ottimizzare un modello LLM utilizzando i job Cloud Run

Informazioni su questo codelab

subjectUltimo aggiornamento: mar 21, 2025
account_circleScritto da un Googler

1. Introduzione

In questo esempio, perfezionerai un modello gemma-2b con un set di dati text-to-sql per fare in modo che l'LLM risponda con una query SQL quando viene posta una domanda in linguaggio naturale. Poi, dovrai prendere il modello ottimizzato e pubblicarlo su Cloud Run utilizzando vLLM.

  • Come eseguire l'ottimizzazione fine utilizzando la GPU di Cloud Run Jobs
  • Come utilizzare la configurazione VPC diretta per un job GPU per caricare e pubblicare il modello più velocemente

2. Prima di iniziare

Per utilizzare la funzionalità GPU, devi richiedere un aumento della quota per una regione supportata. La quota necessaria è nvidia_l4_gpu_allocation_no_zonal_redundancy, che si trova nell'API Cloud Run Admin. Ecco il link diretto per richiedere la quota.

3. Configurazione e requisiti

Imposta le variabili di ambiente che verranno utilizzate durante questo codelab.

PROJECT_ID=<YOUR_PROJECT_ID>
REGION
=<YOUR_REGION>
HF_TOKEN
=<YOUR_HF_TOKEN>

AR_REPO
=codelab-finetuning-jobs
IMAGE_NAME
=finetune-to-gcs
JOB_NAME
=finetuning-to-gcs-job
BUCKET_NAME
=$PROJECT_ID-codelab-finetuning-jobs
SECRET_ID
=HF_TOKEN
SERVICE_ACCOUNT
="finetune-job-sa"
SERVICE_ACCOUNT_ADDRESS
=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com

Crea l'account di servizio eseguendo questo comando:

gcloud iam service-accounts create $SERVICE_ACCOUNT \
 
--display-name="Cloud Run job to access HF_TOKEN Secret ID"

Utilizza Secret Manager per memorizzare il token di accesso HuggingFace.

Per scoprire di più sulla creazione e sull'utilizzo dei secret, consulta la documentazione di Secret Manager.

gcloud secrets create $SECRET_ID \
   
--replication-policy="automatic"

printf $HF_TOKEN
| gcloud secrets versions add $SECRET_ID --data-file=-

Vedrai un output simile a

you'll see output similar to

Created secret [HF_TOKEN].
Created version [1] of the secret [HF_TOKEN].

Concedi al tuo account di servizio Compute Engine predefinito il ruolo di Funzione di accesso ai secret di Secret Manager

gcloud secrets add-iam-policy-binding $SECRET_ID \
   
--member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
   
--role='roles/secretmanager.secretAccessor'

Crea un bucket che ospiterà il modello ottimizzato

gsutil mb -l $REGION gs://$BUCKET_NAME

Quindi concedi all'amministratore delegato l'accesso al bucket.

gcloud storage buckets add-iam-policy-binding gs://$BUCKET_NAME \
--member=serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
--role=roles/storage.objectAdmin

Crea un repository Artifact Registry per il job

gcloud artifacts repositories create $AR_REPO \
   
--repository-format=docker \
   
--location=$REGION \
   
--description="codelab for finetuning using CR jobs" \
   
--project=$PROJECT_ID

4. Crea l&#39;immagine del job Cloud Run

Nel passaggio successivo, creerai il codice che esegue le seguenti operazioni:

  • Importa gemma-2b da huggingface
  • Esegue l'ottimizzazione fine su gemma-2b con il set di dati text-to-sql utilizzando il set di dati di huggingface. Il job utilizza una singola GPU L4 per il perfezionamento.
  • Carica il modello ottimizzato denominato new_model nel bucket GCS dell'utente

Crea una directory per il codice del job di ottimizzazione.

mkdir codelab-finetuning-job
cd codelab
-finetuning-job

Crea un file denominato finetune.py

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch
from datasets import load_dataset, Dataset
from transformers import (
   
AutoModelForCausalLM,
   
AutoTokenizer,
   
BitsAndBytesConfig,
   
TrainingArguments,

)
from peft import LoraConfig, PeftModel

from trl import SFTTrainer
from pathlib import Path

# GCS bucket to upload the model
bucket_name = os.getenv("BUCKET_NAME", "YOUR_BUCKET_NAME")

# The model that you want to train from the Hugging Face hub
model_name = os.getenv("MODEL_NAME", "google/gemma-2b")

# The instruction dataset to use
dataset_name = "b-mc2/sql-create-context"

# Fine-tuned model name
new_model = os.getenv("NEW_MODEL", "gemma-2b-sql")

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = int(os.getenv("LORA_R", "4"))

# Alpha parameter for LoRA scaling
lora_alpha = int(os.getenv("LORA_ALPHA", "8"))

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = True
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = int(os.getenv("TRAIN_BATCH_SIZE", "1"))

# Batch size per GPU for evaluation
per_device_eval_batch_size = int(os.getenv("EVAL_BATCH_SIZE", "2"))

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = int(os.getenv("GRADIENT_ACCUMULATION_STEPS", "1"))

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = int(os.getenv("LOGGING_STEPS", "50"))

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = int(os.getenv("MAX_SEQ_LENGTH", "512"))

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {'':torch.cuda.current_device()}

# Set limit to a positive number
limit = int(os.getenv("DATASET_LIMIT", "5000"))

dataset = load_dataset(dataset_name, split="train")
if limit != -1:
   
dataset = dataset.shuffle(seed=42).select(range(limit))


def transform(data):
   
question = data['question']
   
context = data['context']
   
answer = data['answer']
   
template = "Question: {question}\nContext: {context}\nAnswer: {answer}"
   
return {'text': template.format(question=question, context=context, answer=answer)}


transformed = dataset.map(transform)

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
   
load_in_4bit=use_4bit,
   
bnb_4bit_quant_type=bnb_4bit_quant_type,
   
bnb_4bit_compute_dtype=compute_dtype,
   
bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
   
major, _ = torch.cuda.get_device_capability()
   
if major >= 8:
       
print("=" * 80)
       
print("Your GPU supports bfloat16")
       
print("=" * 80)

# Load base model
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained(
   
model_name,
   
quantization_config=bnb_config,
   
device_map=device_map,
   
torch_dtype=torch.float16,
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
   
lora_alpha=lora_alpha,
   
lora_dropout=lora_dropout,
   
r=lora_r,
   
bias="none",
   
task_type="CAUSAL_LM",
   
target_modules=["q_proj", "v_proj"]
)

# Set training parameters
training_arguments = TrainingArguments(
   
output_dir=output_dir,
   
num_train_epochs=num_train_epochs,
   
per_device_train_batch_size=per_device_train_batch_size,
   
gradient_accumulation_steps=gradient_accumulation_steps,
   
optim=optim,
   
save_steps=save_steps,
   
logging_steps=logging_steps,
   
learning_rate=learning_rate,
   
weight_decay=weight_decay,
   
fp16=fp16,
   
bf16=bf16,
   
max_grad_norm=max_grad_norm,
   
max_steps=max_steps,
   
warmup_ratio=warmup_ratio,
   
group_by_length=group_by_length,
   
lr_scheduler_type=lr_scheduler_type,
)

trainer = SFTTrainer(
   
model=model,
   
train_dataset=transformed,
   
peft_config=peft_config,
   
dataset_text_field="text",
   
max_seq_length=max_seq_length,
   
tokenizer=tokenizer,
   
args=training_arguments,
   
packing=packing,
)

trainer.train()

trainer.model.save_pretrained(new_model)

# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
   
model_name,
   
low_cpu_mem_usage=True,
   
return_dict=True,
   
torch_dtype=torch.float16,
   
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()

# Push to HF
# model.push_to_hub(new_model, check_pr=True)
# tokenizer.push_to_hub(new_model, check_pr=True)

# push to GCS

file_path_to_save_the_model = '/finetune/new_model'
model.save_pretrained(file_path_to_save_the_model)
tokenizer.save_pretrained(file_path_to_save_the_model)

Crea un file requirements.txt.

accelerate==0.30.1
bitsandbytes
==0.43.1
datasets
==2.19.1
transformers
==4.41.0
peft
==0.11.1
trl
==0.8.6
torch
==2.3.0

Crea un Dockerfile

FROM nvidia/cuda:12.6.2-runtime-ubuntu22.04

RUN apt-get update && \
    apt-get -y --no-install-recommends install python3-dev gcc python3-pip git && \
    rm -rf /var/lib/apt/lists/*

COPY requirements.txt /requirements.txt

RUN pip3 install -r requirements.txt --no-cache-dir

COPY finetune.py /finetune.py

ENV PYTHONUNBUFFERED 1

CMD python3 /finetune.py --device cuda

Compila il contenitore nel repository Artifact Registry

gcloud builds submit --tag $REGION-docker.pkg.dev/$PROJECT_ID/$AR_REPO/$IMAGE_NAME

5. Esegui il deployment ed esegui il job

In questo passaggio, creerai la configurazione YAML di Jobs con uscita VPC diretta per caricamenti più rapidi su Google Cloud Storage.

Tieni presente che questo file contiene variabili che aggiornerai in un passaggio successivo.

Innanzitutto, crea un file denominato finetune-job.yaml

apiVersion: run.googleapis.com/v1
kind: Job
metadata:
  name: finetuning-to-gcs-job
  labels:
    cloud.googleapis.com/location: us-central1
  annotations:
    run.googleapis.com/launch-stage: ALPHA
spec:
  template:
    metadata:
      annotations:
        run.googleapis.com/execution-environment: gen2
        run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
    spec:
      parallelism: 1
      taskCount: 1
      template:
        spec:
          serviceAccountName: YOUR_SERVICE_ACCOUNT_NAME@YOUR_PROJECT_ID.iam.gserviceaccount.com
          containers:
          - name: finetune-to-gcs
            image: YOUR_REGION-docker.pkg.dev/YOUR_PROJECT_ID/YOUR_AR_REPO/YOUR_IMAGE_NAME
            env:
            - name: MODEL_NAME
              value: "google/gemma-2b"
            - name: NEW_MODEL
              value: "gemma-2b-sql-finetuned"
            - name: LORA_R
              value: "8"
            - name: LORA_ALPHA
              value: "16"
            - name: TRAIN_BATCH_SIZE
              value: "1"
            - name: EVAL_BATCH_SIZE
              value: "2"
            - name: GRADIENT_ACCUMULATION_STEPS
              value: "2"
            - name: DATASET_LIMIT
              value: "1000"
            - name: MAX_SEQ_LENGTH
              value: "512"
            - name: LOGGING_STEPS
              value: "5"
            - name: HF_TOKEN
              valueFrom:
                secretKeyRef:
                  key: 'latest'
                  name: HF_TOKEN
            resources:
              limits:
                cpu: 8000m
                nvidia.com/gpu: '1'
                memory: 32Gi
            volumeMounts:
            - mountPath: /finetune/new_model
              name: finetuned_model
          volumes:
          - name: finetuned_model
            csi:
              driver: gcsfuse.run.googleapis.com
              readOnly: false
              volumeAttributes:
                bucketName: YOUR_PROJECT_ID-codelab-finetuning-jobs
          maxRetries: 3
          timeoutSeconds: '3600'
          nodeSelector:
            run.googleapis.com/accelerator: nvidia-l4

Ora sostituisci i segnaposto con le variabili di ambiente per l'immagine eseguendo il seguente comando:

sed -i "s/YOUR_SERVICE_ACCOUNT_NAME/$SERVICE_ACCOUNT/; s/YOUR_PROJECT_ID/$PROJECT_ID/;  s/YOUR_PROJECT_ID/$PROJECT_ID/; s/YOUR_REGION/$REGION/; s/YOUR_AR_REPO/$AR_REPO/; s/YOUR_IMAGE_NAME/$IMAGE_NAME/; s/YOUR_PROJECT_ID/$PROJECT_ID/" finetune-job.yaml

A questo punto, crea il job Cloud Run

gcloud alpha run jobs replace finetune-job.yaml

ed esegui il job. L'operazione richiederà circa 10 minuti.

gcloud alpha run jobs execute $JOB_NAME --region $REGION

6. Utilizzare un servizio Cloud Run per pubblicare il modello ottimizzato con vLLM

Crea una cartella per il codice del servizio Cloud Run che pubblicherà il modello ottimizzato

cd ..
mkdir codelab
-finetuning-service
cd codelab
-finetuning-service

Crea un file service.yaml

Questa configurazione utilizza un VPC diretto per accedere al bucket GCS tramite una rete privata per download più rapidi.

Tieni presente che questo file contiene variabili che aggiornerai in un passaggio successivo.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: serve-gemma2b-sql
  labels:
    cloud.googleapis.com/location: us-central1
  annotations:
    run.googleapis.com/launch-stage: BETA
    run.googleapis.com/ingress: all
    run.googleapis.com/ingress-status: all
spec:
  template:
    metadata:
      labels:
      annotations:
        autoscaling.knative.dev/maxScale: '5'
        run.googleapis.com/cpu-throttling: 'false'
        run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
    spec:
      containers:
      - name: serve-finetuned
        image: us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20240220_0936_RC01
        ports:
        - name: http1
          containerPort: 8000
        resources:
          limits:
            cpu: 8000m
            nvidia.com/gpu: '1'
            memory: 32Gi
        volumeMounts:
        - name: fuse
          mountPath: /finetune/new_model
        command: ["python3", "-m", "vllm.entrypoints.api_server"]
        args:
        - --model=/finetune/new_model
        - --tensor-parallel-size=1
        env:
        - name: MODEL_ID
          value: 'new_model'
        - name: HF_HUB_OFFLINE
          value: '1'
      volumes:
      - name: fuse
        csi:
          driver: gcsfuse.run.googleapis.com
          volumeAttributes:
            bucketName: YOUR_BUCKET_NAME
      nodeSelector:
        run.googleapis.com/accelerator: nvidia-l4

Aggiorna il file service.yaml con il nome del bucket.

sed -i "s/YOUR_BUCKET_NAME/$BUCKET_NAME/" service.yaml

Ora esegui il deployment del servizio Cloud Run

gcloud alpha run services replace service.yaml

7. Testa il modello perfezionato

Innanzitutto, ottieni l'URL del servizio per il tuo servizio Cloud Run.

SERVICE_URL=$(gcloud run services describe serve-gemma2b-sql --platform managed --region $REGION --format 'value(status.url)')

Crea il prompt per il tuo modello.

USER_PROMPT="Question: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)"

Ora esegui curl del servizio

curl -X POST $SERVICE_URL/generate \
  -H "Content-Type: application/json" \
  -H "Authorization: bearer $(gcloud auth print-identity-token)" \
  -d @- <<EOF
{
    "prompt": "${USER_PROMPT}",
    "temperature": 0.1,
    "top_p": 1.0,
    "max_tokens": 56
}
EOF

Dovresti visualizzare una risposta simile alla seguente:

{"predictions":["Prompt:\nQuestion: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)\nOutput:\n CREATE TABLE people_to_candidates (candidate_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people (person_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people_to_candidates (person_id VARCHAR, candidate_id"]}