이 Codelab 정보
1. 소개
개요
이 예에서는 자연어로 질문을 받았을 때 LLM이 SQL 쿼리로 답변하도록 텍스트-SQL 데이터 세트를 사용하여 gemma-2b 모델을 미세 조정합니다. 그런 다음 미세 조정된 모델을 가져와 vLLM을 사용하여 Cloud Run에 제공합니다.
학습할 내용
- Cloud Run Jobs GPU를 사용하여 미세 조정하는 방법
- GPU 작업에 직접 VPC 구성을 사용하여 모델을 더 빠르게 업로드하고 제공하는 방법
2. 시작하기 전에
GPU 기능을 사용하려면 지원되는 리전의 할당량 상향을 요청해야 합니다. 필요한 할당량은 Cloud Run Admin API에 있는 nvidia_l4_gpu_allocation_no_zonal_redundancy입니다. 할당량 요청 바로가기 링크입니다.
3. 설정 및 요구사항
이 Codelab 전체에서 사용할 환경 변수를 설정합니다.
PROJECT_ID=<YOUR_PROJECT_ID>
REGION=<YOUR_REGION>
HF_TOKEN=<YOUR_HF_TOKEN>
AR_REPO=codelab-finetuning-jobs
IMAGE_NAME=finetune-to-gcs
JOB_NAME=finetuning-to-gcs-job
BUCKET_NAME=$PROJECT_ID-codelab-finetuning-jobs
SECRET_ID=HF_TOKEN
SERVICE_ACCOUNT="finetune-job-sa"
SERVICE_ACCOUNT_ADDRESS=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com
다음 명령어를 실행하여 서비스 계정을 만듭니다.
gcloud iam service-accounts create $SERVICE_ACCOUNT \
--display-name="Cloud Run job to access HF_TOKEN Secret ID"
Secret Manager를 사용하여 HuggingFace 액세스 토큰을 저장합니다.
Secret Manager 문서에서 보안 비밀 만들기 및 사용에 대해 자세히 알아보세요.
gcloud secrets create $SECRET_ID \
--replication-policy="automatic"
printf $HF_TOKEN | gcloud secrets versions add $SECRET_ID --data-file=-
다음과 비슷한 출력이 표시됩니다.
you'll see output similar to
Created secret [HF_TOKEN].
Created version [1] of the secret [HF_TOKEN].
기본 컴퓨팅 서비스 계정에 Secret Manager 보안 비밀 접근자 역할을 부여합니다.
gcloud secrets add-iam-policy-binding $SECRET_ID \
--member serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
--role='roles/secretmanager.secretAccessor'
미세 조정된 모델을 호스팅할 버킷 만들기
gsutil mb -l $REGION gs://$BUCKET_NAME
그런 다음 SA에 버킷에 대한 액세스 권한을 부여합니다.
gcloud storage buckets add-iam-policy-binding gs://$BUCKET_NAME \
--member=serviceAccount:$SERVICE_ACCOUNT_ADDRESS \
--role=roles/storage.objectAdmin
작업의 아티팩트 저장소 만들기
gcloud artifacts repositories create $AR_REPO \
--repository-format=docker \
--location=$REGION \
--description="codelab for finetuning using CR jobs" \
--project=$PROJECT_ID
미세 조정된 모델을 위한 Cloud Storage 버킷 만들기
gsutil mb -l $REGION gs://$BUCKET_NAME
마지막으로 Cloud Run 작업의 Artifact Registry 저장소를 만듭니다.
gcloud artifacts repositories create $AR_REPO \
--repository-format=docker \
--location=$REGION \
--description="codelab for finetuning using cloud run jobs"
4. Cloud Run 작업 이미지 만들기
다음 단계에서는 다음을 실행하는 코드를 만듭니다.
- huggingface에서 gemma-2b를 가져옵니다.
- huggingface의 데이터 세트를 사용하여 텍스트-SQL 데이터 세트로 gemma-2b를 미세 조정합니다. 작업은 미세 조정에 단일 L4 GPU를 사용합니다.
- new_model이라는 미세 조정된 모델을 사용자의 GCS 버킷에 업로드합니다.
미세 조정 작업 코드의 디렉터리를 만듭니다.
mkdir codelab-finetuning-job
cd codelab-finetuning-job
finetune.py
라는 파일을 만듭니다.
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from datasets import load_dataset, Dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
from pathlib import Path
# GCS bucket to upload the model
bucket_name = os.getenv("BUCKET_NAME", "YOUR_BUCKET_NAME")
# The model that you want to train from the Hugging Face hub
model_name = os.getenv("MODEL_NAME", "google/gemma-2b")
# The instruction dataset to use
dataset_name = "b-mc2/sql-create-context"
# Fine-tuned model name
new_model = os.getenv("NEW_MODEL", "gemma-2b-sql")
################################################################################
# QLoRA parameters
################################################################################
# LoRA attention dimension
lora_r = int(os.getenv("LORA_R", "4"))
# Alpha parameter for LoRA scaling
lora_alpha = int(os.getenv("LORA_ALPHA", "8"))
# Dropout probability for LoRA layers
lora_dropout = 0.1
################################################################################
# bitsandbytes parameters
################################################################################
# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"
# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"
# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False
################################################################################
# TrainingArguments parameters
################################################################################
# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"
# Number of training epochs
num_train_epochs = 1
# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = True
bf16 = False
# Batch size per GPU for training
per_device_train_batch_size = int(os.getenv("TRAIN_BATCH_SIZE", "1"))
# Batch size per GPU for evaluation
per_device_eval_batch_size = int(os.getenv("EVAL_BATCH_SIZE", "2"))
# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = int(os.getenv("GRADIENT_ACCUMULATION_STEPS", "1"))
# Enable gradient checkpointing
gradient_checkpointing = True
# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3
# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4
# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001
# Optimizer to use
optim = "paged_adamw_32bit"
# Learning rate schedule
lr_scheduler_type = "cosine"
# Number of training steps (overrides num_train_epochs)
max_steps = -1
# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03
# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True
# Save checkpoint every X updates steps
save_steps = 0
# Log every X updates steps
logging_steps = int(os.getenv("LOGGING_STEPS", "50"))
################################################################################
# SFT parameters
################################################################################
# Maximum sequence length to use
max_seq_length = int(os.getenv("MAX_SEQ_LENGTH", "512"))
# Pack multiple short examples in the same input sequence to increase efficiency
packing = False
# Load the entire model on the GPU 0
device_map = {'':torch.cuda.current_device()}
# Set limit to a positive number
limit = int(os.getenv("DATASET_LIMIT", "5000"))
dataset = load_dataset(dataset_name, split="train")
if limit != -1:
dataset = dataset.shuffle(seed=42).select(range(limit))
def transform(data):
question = data['question']
context = data['context']
answer = data['answer']
template = "Question: {question}\nContext: {context}\nAnswer: {answer}"
return {'text': template.format(question=question, context=context, answer=answer)}
transformed = dataset.map(transform)
# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=use_4bit,
bnb_4bit_quant_type=bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=use_nested_quant,
)
# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("=" * 80)
print("Your GPU supports bfloat16")
print("=" * 80)
# Load base model
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map=device_map,
torch_dtype=torch.float16,
)
model.config.use_cache = False
model.config.pretraining_tp = 1
# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
# Load LoRA configuration
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "v_proj"]
)
# Set training parameters
training_arguments = TrainingArguments(
output_dir=output_dir,
num_train_epochs=num_train_epochs,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
weight_decay=weight_decay,
fp16=fp16,
bf16=bf16,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=group_by_length,
lr_scheduler_type=lr_scheduler_type,
)
trainer = SFTTrainer(
model=model,
train_dataset=transformed,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
packing=packing,
)
trainer.train()
trainer.model.save_pretrained(new_model)
# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()
# Push to HF
# model.push_to_hub(new_model, check_pr=True)
# tokenizer.push_to_hub(new_model, check_pr=True)
# push to GCS
file_path_to_save_the_model = '/finetune/new_model'
model.save_pretrained(file_path_to_save_the_model)
tokenizer.save_pretrained(file_path_to_save_the_model)
requirements.txt
파일을 만듭니다.
accelerate==0.30.1
bitsandbytes==0.43.1
datasets==2.19.1
transformers==4.41.0
peft==0.11.1
trl==0.8.6
torch==2.3.0
Dockerfile
를 만드는 방법
FROM nvidia/cuda:12.6.2-runtime-ubuntu22.04
RUN apt-get update && \
apt-get -y --no-install-recommends install python3-dev gcc python3-pip git && \
rm -rf /var/lib/apt/lists/*
RUN pip3 install -r requirements.txt --no-cache-dir
COPY finetune.py /finetune.py
ENV PYTHONUNBUFFERED 1
CMD python3 /finetune.py --device cuda
Artifact Registry 저장소에서 컨테이너 빌드
gcloud builds submit --tag $REGION-docker.pkg.dev/$PROJECT_ID/$AR_REPO/$IMAGE_NAME
5. 작업 배포 및 실행
이 단계에서는 Google Cloud Storage에 더 빠르게 업로드할 수 있도록 직접 VPC 이그레스가 포함된 작업 YAML 구성을 만듭니다.
이 파일에는 다음 단계에서 업데이트할 변수가 포함되어 있습니다.
먼저 finetune-job.yaml
라는 파일을 만듭니다.
apiVersion: run.googleapis.com/v1
kind: Job
metadata:
name: finetuning-to-gcs-job
labels:
cloud.googleapis.com/location: us-central1
annotations:
run.googleapis.com/launch-stage: ALPHA
spec:
template:
metadata:
annotations:
run.googleapis.com/execution-environment: gen2
run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
spec:
parallelism: 1
taskCount: 1
template:
spec:
serviceAccountName: YOUR_SERVICE_ACCOUNT_NAME@YOUR_PROJECT_ID.iam.gserviceaccount.com
containers:
- name: finetune-to-gcs
image: YOUR_REGION-docker.pkg.dev/YOUR_PROJECT_ID/YOUR_AR_REPO/YOUR_IMAGE_NAME
env:
- name: MODEL_NAME
value: "google/gemma-2b"
- name: NEW_MODEL
value: "gemma-2b-sql-finetuned"
- name: LORA_R
value: "8"
- name: LORA_ALPHA
value: "16"
- name: TRAIN_BATCH_SIZE
value: "1"
- name: EVAL_BATCH_SIZE
value: "2"
- name: GRADIENT_ACCUMULATION_STEPS
value: "2"
- name: DATASET_LIMIT
value: "1000"
- name: MAX_SEQ_LENGTH
value: "512"
- name: LOGGING_STEPS
value: "5"
- name: HF_TOKEN
valueFrom:
secretKeyRef:
key: 'latest'
name: HF_TOKEN
resources:
limits:
cpu: 8000m
nvidia.com/gpu: '1'
memory: 32Gi
volumeMounts:
- mountPath: /finetune/new_model
name: finetuned_model
volumes:
- name: finetuned_model
csi:
driver: gcsfuse.run.googleapis.com
readOnly: false
volumeAttributes:
bucketName: YOUR_RPOJECT_ID-codelab-finetuning-jobs
maxRetries: 3
timeoutSeconds: '3600'
nodeSelector:
run.googleapis.com/accelerator: nvidia-l4
이제 다음 명령어를 실행하여 자리표시자를 이미지의 환경 변수로 바꿉니다.
sed -i "s/YOUR_SERVICE_ACCOUNT_NAME/$SERVICE_ACCOUNT/; s/YOUR_PROJECT_ID/$PROJECT_ID/; s/YOUR_PROJECT_ID/$PROJECT_ID/; s/YOUR_REGION/$REGION/; s/YOUR_AR_REPO/$AR_REPO/; s/YOUR_IMAGE_NAME/$IMAGE_NAME/; s/YOUR_PROJECT_ID/$PROJECT_ID/" finetune-job.yaml
다음으로 Cloud Run 작업을 만듭니다.
gcloud alpha run jobs replace finetune-job.yaml
작업을 실행합니다. 이 과정은 약 10분 정도 걸립니다.
gcloud alpha run jobs execute $JOB_NAME --region $REGION
6. Cloud Run 서비스를 사용하여 vLLM으로 미세 조정된 모델 제공
미세 조정된 모델을 제공할 Cloud Run 서비스 코드의 폴더 만들기
cd ..
mkdir codelab-finetuning-service
cd codelab-finetuning-service
service.yaml
파일 만들기
이 구성은 더 빠른 다운로드를 위해 직접 VPC를 사용하여 비공개 네트워크를 통해 GCS 버킷에 액세스합니다.
이 파일에는 다음 단계에서 업데이트할 변수가 포함되어 있습니다.
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: serve-gemma2b-sql
labels:
cloud.googleapis.com/location: us-central1
annotations:
run.googleapis.com/launch-stage: BETA
run.googleapis.com/ingress: all
run.googleapis.com/ingress-status: all
spec:
template:
metadata:
labels:
annotations:
autoscaling.knative.dev/maxScale: '5'
run.googleapis.com/cpu-throttling: 'false'
run.googleapis.com/network-interfaces: '[{"network":"default","subnetwork":"default"}]'
spec:
containers:
- name: serve-finetuned
image: us-docker.pkg.dev/vertex-ai/vertex-vision-model-garden-dockers/pytorch-vllm-serve:20240220_0936_RC01
ports:
- name: http1
containerPort: 8000
resources:
limits:
cpu: 8000m
nvidia.com/gpu: '1'
memory: 32Gi
volumeMounts:
- name: fuse
mountPath: /finetune/new_model
command: ["python3", "-m", "vllm.entrypoints.api_server"]
args:
- --model=/finetune/new_model
- --tensor-parallel-size=1
env:
- name: MODEL_ID
value: 'new_model'
- name: HF_HUB_OFFLINE
value: '1'
volumes:
- name: fuse
csi:
driver: gcsfuse.run.googleapis.com
volumeAttributes:
bucketName: YOUR_BUCKET_NAME
nodeSelector:
run.googleapis.com/accelerator: nvidia-l4
service.yaml
파일을 버킷 이름으로 업데이트합니다.
sed -i "s/YOUR_BUCKET_NAME/$BUCKET_NAME/" finetune-job.yaml
이제 Cloud Run 서비스를 배포합니다.
gcloud alpha run services replace service.yaml
7. 미세 조정된 모델 테스트
먼저 Cloud Run 서비스의 서비스 URL을 가져옵니다.
SERVICE_URL=$(gcloud run services describe serve-gemma2b-sql --platform managed --region $REGION --format 'value(status.url)')
모델의 프롬프트를 만듭니다.
USER_PROMPT="Question: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)"
이제 서비스를 curl합니다.
curl -X POST $SERVICE_URL/generate \
-H "Content-Type: application/json" \
-H "Authorization: bearer $(gcloud auth print-identity-token)" \
-d @- <<EOF
{
"prompt": "${USER_PROMPT}",
"temperature": 0.1,
"top_p": 1.0,
"max_tokens": 56
}
EOF
다음과 비슷한 응답이 표시됩니다.
{"predictions":["Prompt:\nQuestion: What are the first name and last name of all candidates? Context: CREATE TABLE candidates (candidate_id VARCHAR); CREATE TABLE people (first_name VARCHAR, last_name VARCHAR, person_id VARCHAR)\nOutput:\n CREATE TABLE people_to_candidates (candidate_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people (person_id VARCHAR, person_id VARCHAR) CREATE TABLE people_to_people_to_candidates (person_id VARCHAR, candidate_id"]}