Sobre este codelab
1. Introdução
Visão geral
Neste codelab, você vai aprender a implantar um app FastAPI no Cloud Run. O app é um chatbot que solicita um modelo do Gemini.
O que você vai aprender
- Como implantar o FastAPI no Cloud Run
- Acionar o Gemini do Cloud Run em Python usando uma biblioteca de cliente do Google
2. Configuração e requisitos
Defina as variáveis de ambiente que serão usadas neste codelab.
PROJECT_ID=<YOUR_PROJECT_ID>
REGION=<YOUR_REGION>
GEMINI_MODEL=gemini-2.0-flash-001
SERVICE_NAME=fastapi-gemini
SERVICE_ACCOUNT=fastapi-gemini-sa
SERVICE_ACCOUNT_ADDRESS=$SERVICE_ACCOUNT@$PROJECT_ID.iam.gserviceaccount.com
Execute este comando para criar a conta de serviço:
gcloud iam service-accounts create $SERVICE_ACCOUNT \
--display-name="Service Account for FastAPI Gemini CR service"
Conceda à sua conta de serviço acesso ao Gemini com a função de usuário da Vertex AI.
gcloud projects add-iam-policy-binding $PROJECT_ID \
--member="serviceAccount:$SERVICE_ACCOUNT_ADDRESS" \
--role="roles/aiplatform.user"
3. Criar o app
Crie um diretório para o código.
mkdir codelab-cr-fastapi-gemini
cd codelab-cr-fastapi-gemini
Primeiro, você vai criar os modelos HTML criando um diretório de modelos.
mkdir templates
cd templates
Crie um novo arquivo chamado ai_message.html
com o seguinte conteúdo:
<div class="message-container ai-message-container">
{{ ai_response_text }}
</div>
Crie um novo arquivo chamado message.html
com o seguinte conteúdo:
<div class="message-container user-message">
{{ message }}
</div>
Crie um novo arquivo chamado index.html
com o seguinte conteúdo:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>FastAPI HTMX Gemini Chat</title>
<style>
body { font-family: sans-serif; max-width: 700px; margin: auto; padding: 20px; background-color: #f4f4f4; }
#chat-messages { border: 1px solid #ccc; background-color: #fff; padding: 15px; height: 400px; overflow-y: scroll; margin-bottom: 15px; border-radius: 5px; box-shadow: inset 0 1px 3px rgba(0,0,0,0.1); }
.message-container { margin-bottom: 10px; padding: 8px 12px; border-radius: 15px; max-width: 80%; word-wrap: break-word; }
.user-message { background-color: #dcf8c6; align-self: flex-end; margin-left: auto; text-align: right; border-bottom-right-radius: 0;}
.ai-message-container { background-color: #eee; align-self: flex-start; margin-right: auto; border-bottom-left-radius: 0;}
.ai-message-container p { margin: 0.2em 0; } /* Spacing for streamed paragraphs */
.ai-message-container p:first-child { margin-top: 0; }
.ai-message-container p:last-child { margin-bottom: 0; }
form { display: flex; margin-top: 10px; }
input[type="text"] { flex-grow: 1; padding: 10px; border: 1px solid #ccc; border-radius: 20px; margin-right: 10px; }
button { padding: 10px 20px; background-color: #0b93f6; color: white; border: none; border-radius: 20px; cursor: pointer; font-weight: bold; }
button:hover { background-color: #0a84dd; }
</style>
<script src="https://unpkg.com/htmx.org@2.0.4"
integrity="sha384-HGfztofotfshcF7+8n44JQL2oJmowVChPTg48S+jvZoztPfvwD79OC/LTtG6dMp+" crossorigin="anonymous"></script>
<script src="https://unpkg.com/htmx-ext-sse@2.2.2" crossorigin="anonymous"></script>
</head>
<body>
<h1>Chat with Gemini</h1>
<div id="chat-messages">
{% for msg in messages %}
{# Render initial messages if needed #}
{% endfor %}
</div>
<form
hx-post="/ask" {# Post to the /ask endpoint #}
hx-target="#chat-messages" {# Target the main chat area #}
hx-swap="beforeend" {# Append the response (user msg + AI placeholder) #}
hx-on::after-request="this.reset(); document.getElementById('chat-messages').scrollTop = document.getElementById('chat-messages').scrollHeight;" {# Clear form & scroll down #}
>
<input type="text" name="message" placeholder="Ask Gemini..." autofocus autocomplete="off">
<button type="submit">Send</button>
</form>
<script>
// Initial scroll to bottom on page load (if needed)
window.onload = () => {
const chatBox = document.getElementById('chat-messages');
chatBox.scrollTop = chatBox.scrollHeight;
}
</script>
</body>
</html>
Agora crie seu código Python e outros arquivos no diretório raiz
cd ..
Crie um arquivo .gcloudignore
com o seguinte conteúdo:
__pycache__
Crie um arquivo chamado main.py
com o conteúdo a seguir:
from fastapi import FastAPI, Request, Form
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from typing import List, Annotated
from google import genai
import os
# in case the env var isn't set, use YOUR_<VARIABLE> as the default
# to help with debugging
project_id = os.getenv("PROJECT_ID", "YOUR_PROJECT_ID")
region = os.getenv("REGION", "YOUR_REGION")
gemini_model = os.getenv("GEMINI_MODEL", "gemini-2.0-flash-001")
app = FastAPI(title="FastAPI HTMX Chat")
templates = Jinja2Templates(directory="templates")
genai_client = genai.Client(
vertexai=True, project=project_id, location=region
)
system_prompt = f"""
You're a chatbot that helps pass the time with small talk, that is
polite conversation about unimportant or uncontroversial matters
that allows people to pass the time. Please keep your answers short.
"""
chat_messages: List[str] = []
# --- Routes ---
@app.get("/", response_class=HTMLResponse)
async def get_chat_ui(request: Request):
"""Serves the main chat page."""
print("Serving index.html")
return templates.TemplateResponse(
"index.html",
{"request": request, "messages": chat_messages} # Pass existing messages
)
@app.post("/ask", response_class=HTMLResponse)
async def ask_gemini_and_respond(
request: Request,
# Use Annotated for dependency injection with Form data
message: Annotated[str, Form()]
):
user_msg_html = templates.get_template('message.html').render({'message': message})
print("asking gemini...")
response = genai_client.models.generate_content(
model=gemini_model,
contents=[message],
config=genai.types.GenerateContentConfig(
system_instruction=system_prompt,
temperature=0.7,
),
)
print("Gemini responded with: " + response.text)
ai_response_html = templates.get_template('ai_message.html').render({'ai_response_text': response.text})
combined_html = user_msg_html + ai_response_html
return HTMLResponse(content=combined_html)
Crie um Dockerfile
com o seguinte conteúdo:
# Build stage
FROM python:3.12-slim AS builder
WORKDIR /app
# Install poetry
RUN pip install poetry
RUN poetry self add poetry-plugin-export
# Copy poetry files
COPY pyproject.toml poetry.lock* ./
# Copy application code
COPY . .
# Export dependencies to requirements.txt
RUN poetry export -f requirements.txt --output requirements.txt
# Final stage
FROM python:3.12-slim
RUN apt-get update && apt-get install -y libcairo2 python3-dev libffi-dev
WORKDIR /app
# Copy files from builder
COPY --from=builder /app/ .
# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Compile bytecode to improve startup latency
# -q: Quiet mode
# -b: Write legacy bytecode files (.pyc) alongside source
# -f: Force rebuild even if timestamps are up-to-date
RUN python -m compileall -q -b -f .
# Expose port
EXPOSE 8080
# Run the application
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8080"]
Crie um arquivo pyproject.toml
[tool.poetry]
name = "codelab"
version = "0.1.0"
description = ""
authors = ["Your Name <you@example.com>"]
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.12"
fastapi = "^0.115.12"
uvicorn = {extras = ["standard"], version = "^0.34.0"}
jinja2 = "^3.1.6"
python-multipart = "^0.0.20"
google-genai = "^1.8.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
4. Implantar no Cloud Run
gcloud run deploy $SERVICE_NAME \
--source . \
--allow-unauthenticated \
--service-account=$SERVICE_ACCOUNT_ADDRESS \
--set-env-vars=PROJECT_ID=$PROJECT_ID \
--set-env-vars=REGION=$REGION \
--set-env-vars=GEMINI_MODEL=$GEMINI_MODEL
5. Testar o serviço
Abra o URL do serviço no seu navegador da Web e faça uma pergunta ao Gemini, por exemplo, "Por que o céu é azul?".
6. Parabéns!
Parabéns por concluir o codelab.
O que aprendemos
- Como implantar o FastAPI no Cloud Run
- Acionar o Gemini do Cloud Run em Python usando uma biblioteca de cliente do Google
7. Limpar
Para excluir o serviço do Cloud Run, acesse o Console do Cloud Run em https://console.cloud.google.com/run e exclua o serviço.
Se você quiser excluir o projeto inteiro, acesse https://console.cloud.google.com/cloud-resource-manager, selecione o projeto criado na etapa 2 e escolha "Excluir". Se você excluir o projeto, vai precisar mudar os projetos no Cloud SDK. Para conferir a lista de todos os projetos disponíveis, execute gcloud projects list
.